ﻻ يوجد ملخص باللغة العربية
The composition operators preserving total non-negativity and total positivity for various classes of kernels are classified, following three themes. Letting a function act by post composition on kernels with arbitrary domains, it is shown that such a composition operator maps the set of totally non-negative kernels to itself if and only if the function is constant or linear, or just linear if it preserves total positivity. Symmetric kernels are also discussed, with a similar outcome. These classification results are a byproduct of two matrix-completion results and the second theme: an extension of A.M. Whitneys density theorem from finite domains to subsets of the real line. This extension is derived via a discrete convolution with modulated Gaussian kernels. The third theme consists of analyzing, with tools from harmonic analysis, the preservers of several families of totally non-negative and totally positive kernels with additional structure: continuous Hankel kernels on an interval, Polya frequency functions, and Polya frequency sequences. The rigid structure of post-composition transforms of totally positive kernels acting on infinite sets is obtained by combining several specialized situations settled in our present and earlier works.
We prove the converse to a result of Karlin [Trans. AMS 1964], and also strengthen his result and two results of Schoenberg [Ann. of Math. 1955]. One of the latter results concerns zeros of Laplace transforms of multiply positive functions. The other
The main purpose of our paper is a new approach to design of algorithms of Kaczmarz type in the framework of operators in Hilbert space. Our applications include a diverse list of optimization problems, new Karhunen-Lo`eve transforms, and Principal C
We classify functions $f:(a,b)rightarrow mathbb{R}$ which satisfy the inequality $$operatorname{tr} f(A)+f(C)geq operatorname{tr} f(B)+f(D)$$ when $Aleq Bleq C$ are self-adjoint matrices, $D= A+C-B$, the so-called trace minmax functions. (Here $Aleq
Given scalars $a_n ( eq 0)$ and $b_n$, $n geq 0$, the tridiagonal kernel or band kernel with bandwidth $1$ is the positive definite kernel $k$ on the open unit disc $mathbb{D}$ defined by [ k(z, w) = sum_{n=0}^infty Big((a_n + b_n z)z^nBig) Big((bar{
We establish a duality for two factorization questions, one for general positive definite (p.d) kernels $K$, and the other for Gaussian processes, say $V$. The latter notion, for Gaussian processes is stated via Ito-integration. Our approach to facto