ترغب بنشر مسار تعليمي؟ اضغط هنا

The Distribution and Deposition Algorithm for Multiple Sequences Sets

204   0   0.0 ( 0 )
 نشر من قبل Kang Ning
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Sequences set is a mathematical model used in many applications. As the number of the sequences becomes larger, single sequence set model is not appropriate for the rapidly increasing problem sizes. For example, more and more text processing applications separate a single big text file into multiple files before processing. For these applications, the underline mathematical model is multiple sequences sets (MSS). Though there is increasing use of MSS, there is little research on how to process MSS efficiently. To process multiple sequences sets, sequences are first distributed to different sets, and then sequences for each set are processed. Deriving effective algorithm for MSS processing is both interesting and challenging. In this paper, we have defined the cost functions and performance ratio for analysis of the quality of synthesis sequences. Based on these, the problem of Process of Multiple Sequences Sets (PMSS) is formulated. We have first proposed two greedy algorithms for the PMSS problem, which are based on generalization of algorithms for single sequences set. Then based on the analysis of the characteristics of multiple sequences sets, we have proposed the Distribution and Deposition (DDA) algorithm and DDA* algorithm for PMSS problem. In DDA algorithm, the sequences are first distributed to multiple sets according to their alphabet contents; then sequences in each set are deposited by the deposition algorithm. The DDA* algorithm differs from the DDA algorithm in that the DDA* algorithm distributes sequences by clustering based on sequence profiles. Experiments show that DDA and DDA* always output results with smaller costs than other algorithms, and DDA* outperforms DDA in most instances. The DDA and DDA* algorithms are also efficient both in time and space.



قيم البحث

اقرأ أيضاً

We consider the distributed version of the Multiple Knapsack Problem (MKP), where $m$ items are to be distributed amongst $n$ processors, each with a knapsack. We propose different distributed approximation algorithms with a tradeoff between time and message complexities. The algorithms are based on the greedy approach of assigning the best item to the knapsack with the largest capacity. These algorithms obtain a solution with a bound of $frac{1}{n+1}$ times the optimum solution, with either $mathcal{O}left(mlog nright)$ time and $mathcal{O}left(m nright)$ messages, or $mathcal{O}left(mright)$ time and $mathcal{O}left(mn^{2}right)$ messages.
It was recently shown that a version of the greedy algorithm gives a construction of fault-tolerant spanners that is size-optimal, at least for vertex faults. However, the algorithm to construct this spanner is not polynomial-time, and the best-known polynomial time algorithm is significantly suboptimal. Designing a polynomial-time algorithm to construct (near-)optimal fault-tolerant spanners was given as an explicit open problem in the two most recent papers on fault-tolerant spanners ([Bodwin, Dinitz, Parter, Vassilevka Williams SODA 18] and [Bodwin, Patel PODC 19]). We give a surprisingly simple algorithm which runs in polynomial time and constructs fault-tolerant spanners that are extremely close to optimal (off by only a linear factor in the stretch) by modifying the greedy algorithm to run in polynomial time. To complement this result, we also give simple distributed constructions in both the LOCAL and CONGEST models.
This paper proposes a general framework for adding linearizable iterators to a class of data structures that implement set operations. We introduce a condition on set operations, called local consistency, which informally states that set operations n ever make elements unreachable to a sequential iterators traversal. We show that sets with locally consistent operations can be augmented with a linearizable iterator via the framework. Our technique is broadly applicable to a variety of data structures, including hash tables and binary search trees. We apply the technique to sets taken from existing literature, prove their operations are locally consistent, and demonstrate that iterators do not significantly affect the performance of concurrent set operations.
In this paper, we study the parallel query complexity of reconstructing biological and digital phylogenetic trees from simple queries involving their nodes. This is motivated from computational biology, data protection, and computer security settings , which can be abstracted in terms of two parties, a responder, Alice, who must correctly answer queries of a given type regarding a degree-d tree, T, and a querier, Bob, who issues batches of queries, with each query in a batch being independent of the others, so as to eventually infer the structure of T. We show that a querier can efficiently reconstruct an n-node degree-d tree, T, with a logarithmic number of rounds and quasilinear number of queries, with high probability, for various types of queries, including relative-distance queries and path queries. Our results are all asymptotically optimal and improve the asymptotic (sequential) query complexity for one of the problems we study. Moreover, through an experimental analysis using both real-world and synthetic data, we provide empirical evidence that our algorithms provide significant parallel speedups while also improving the total query complexities for the problems we study.
Dynamic Connectivity is a fundamental algorithmic graph problem, motivated by a wide range of applications to social and communication networks and used as a building block in various other algorithms, such as the bi-connectivity and the dynamic mini mal spanning tree problems. In brief, we wish to maintain the connected components of the graph under dynamic edge insertions and deletions. In the sequential case, the problem has been well-studied from both theoretical and practical perspectives. However, much less is known about efficient concurrent solutions to this problem. This is the gap we address in this paper. We start from one of the classic data structures used to solve this problem, the Euler Tour Tree. Our first contribution is a non-blocking single-writer implementation of it. We leverage this data structure to obtain the first truly concurrent generalization of dynamic connectivity, which preserves the time complexity of its sequential counterpart, but is also scalable in practice. To achieve this, we rely on three main techniques. The first is to ensure that connectivity queries, which usually dominate real-world workloads, are non-blocking. The second non-trivial technique expands the above idea by making all queries that do not change the connectivity structure non-blocking. The third ingredient is applying fine-grained locking for updating the connected components, which allows operations on disjoint components to occur in parallel. We evaluate the resulting algorithm on various workloads, executing on both real and synthetic graphs. The results show the efficiency of each of the proposed optimizations; the most efficient variant improves the performance of a coarse-grained based implementation on realistic scenarios up to 6x on average and up to 30x when connectivity queries dominate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا