ﻻ يوجد ملخص باللغة العربية
This article contains a characterization of operator systems $cS$ with the property that every positive map $phi:cS rightarrow M_n$ is decomposable, as well as an alternate and a more direct proof of a characterization of decomposable maps due to E. Sto rmer.
We define a strong Morita-type equivalence $sim _{sigma Delta }$ for operator algebras. We prove that $Asim _{sigma Delta }B$ if and only if $A$ and $B$ are stably isomorphic. We also define a relation $subset _{sigma Delta }$ for operator algebras.
We show that the definition of parabolic-like map can be slightly modified, by asking $partial Delta$ to be a quasiarc out of the parabolic fixed point, instead of the dividing arcs to be $C^1$ on $[-1,0]$ and $[0,1]$.
We study the structure of C*-algebras associated with compactly aligned product systems over group embeddable right LCM-semigroups. Towards this end we employ controlled maps and a controlled elimination method that associates the original cores to t
Given an Archimedean order unit space (V,V^+,e), we construct a minimal operator system OMIN(V) and a maximal operator system OMAX(V), which are the analogues of the minimal and maximal operator spaces of a normed space. We develop some of the key pr
Frames on Hilbert C*-modules have been defined for unital C*-algebras by Frank and Larson and operator valued frames on a Hilbert space have been studied in arXiv.0707.3272v1.[math.FA]. Goal of the present paper is to introduce operator valued frames