ﻻ يوجد ملخص باللغة العربية
We study the structure of C*-algebras associated with compactly aligned product systems over group embeddable right LCM-semigroups. Towards this end we employ controlled maps and a controlled elimination method that associates the original cores to those of the controlling pair, and we combine with applications of the C*-envelope theory for cosystems of nonselfadjoint operator algebras recently produced. We derive several applications of these methods that generalize results on single C*-correspondences. First we show that if the controlling group is exact then the co-universal C*-algebra of the product system coincides with the quotient of the Fock C*-algebra by the ideal of strong covariance relations. We show that if the controlling group is amenable then the product system is amenable. In particular if the controlling group is abelian then the co-universal C*-algebra is the C*-envelope of the tensor algebra. Secondly we give necessary and sufficient conditions for the Fock C*-algebra to be nuclear and exact. When the controlling group is amenable we completely characterize nuclearity and exactness of any equivariant injective Nica-covariant representation of the product system. Thirdly we consider controlled maps that enjoy a saturation property. In this case we induce a compactly aligned product system over the controlling pair that shares the same Fock representation, and preserves injectivity. By using co-universality, we show that they share the same reduced covariance algebras. If in addition the controlling pair is a total order then the fixed point algebra of the controlling group induces a super-product system that has the same reduced covariance algebra and is moreover reversible.
We introduce the notion of additive units, or `addits, of a pointed Arveson system, and demonstrate their usefulness through several applications. By a pointed Arveson system we mean a spatial Arveson system with a fixed normalised reference unit. We
An E_0-semigroup is called q-pure if it is a CP-flow and its set of flow subordinates is totally ordered by subordination. The range rank of a positive boundary weight map is the dimension of the range of its dual map. Let K be a separable Hilbert sp
We consider C*-algebras of finite higher-rank graphs along with their rotational action. We show how the entropy theory of product systems with finite frames applies to identify the phase transitions of the dynamics. We compute the positive inverse t
We analyze the dichotomy amenable/paradoxical in the context of (discrete, countable, unital) semigroups and corresponding semigroup rings. We consider also F{o}lners type characterizations of amenability and give an example of a semigroup whose semi
We study two classes of operator algebras associated with a unital subsemigroup $P$ of a discrete group $G$: one related to universal structures, and one related to co-universal structures. First we provide connections between universal C*-algebras t