ترغب بنشر مسار تعليمي؟ اضغط هنا

Operator valued frames on C*-modules

186   0   0.0 ( 0 )
 نشر من قبل Victor Kaftal
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English
 تأليف Victor Kaftal




اسأل ChatGPT حول البحث

Frames on Hilbert C*-modules have been defined for unital C*-algebras by Frank and Larson and operator valued frames on a Hilbert space have been studied in arXiv.0707.3272v1.[math.FA]. Goal of the present paper is to introduce operator valued frames on a Hilbert C*-module for a sigma-unital C*-algebra. Theorem 1.4 reformulates the definition given by Frank and Larson in terms of a series of rank-one operators converging in the strict topology. Theorem 2.2. shows that the frame transform and the frame projection of an operator valued frame are limits in the strict topology of a series of elements in the multiplier algebra and hence belong to it. Theorem 3.3 shows that two operator valued frames are right similar if and only if they share the same frame projection. Theorem 3.4 establishes a one to one correspondence between Murray-von Neumann equivalence classes of projections in the multiplier algebra and right similarity equivalence classes of operator valued frames and provides a parametrization of all Parseval operator-valued frames on a given Hilbert C*-module. Left similarity is then defined and Proposition 3.9 establishes when two left unitarily equivalent frames are also right unitarily equivalent.



قيم البحث

اقرأ أيضاً

We give a comprehensive introduction to a general modular frame construction in Hilbert C*-modules and to related modular operators on them. The Hilbert space situation appears as a special case. The reported investigations rely on the idea of geomet ric dilation to standard Hilbert C*-modulesover unital C*-algebras that admit an orthonormal Riesz basis. Interrelations and applications to classical linear frame theory are indicated. As an application we describe the nature of families of operators {S_i} such that SUM_i S*_iS_i=id_H, where H is a Hilbert space. Resorting to frames in Hilbert spaces we discuss some measures for pairs of frames to be close to one another. Most of the measures are expressed in terms of norm-distances of different kinds of frame operators. In particular, the existence and uniqueness of the closest (normalized) tight frame to a given frame is investigated. For Riesz bases with certain restrictions the set of closetst tight frames often contains a multiple of its symmetric orthogonalization (i.e. Lowdin orthogonalization).
We present a general approach to a modular frame theory in C*-algebras and Hilbert C*-modules. The investigations rely on the idea of geometric dilation to standard Hilbert C*-modules over unital C*-algebras that possess orthonormal Hilbert bases, an d of reconstruction of the frames by projections and by other bounded modular operators with suitable ranges. We obtain frame representations and decomposition theorems, as well as similarity and equivalence results for frames. Hilbert space frames and quasi-bases for conditional expectations of finite index on C*-algebras appear as special cases. Using a canonical categorical equivalence of Hilbert C*-modules over commutative C*-algebras and (F)Hilbert bundles the results find a reintepretation for frames in vector and (F)Hilbert bundles. Fields of applications are investigations on Cuntz-Krieger-Pimsner algebras, on conditional expectations of finite index, on various ranks of C*-algebras, on classical frame theory of Hilbert spaces (wavelet and Gabor frames), and others. 2001: In the introduction we refer to related publications in detail.
157 - Victor Kaftal 2007
We develop a natural generalization of vector-valued frame theory, we term operator-valued frame theory, using operator-algebraic methods. This extends work of the second author and D. Han which can be viewed as the multiplicity one case and extends to higher multiplicity (e.g., multiframes) their dilation approach. We prove several results for operator-valued frames concerning their parametrization, duality, disjointeness, complementarity, and composition and the relationship between the two types of similarity (left and right) of such frames. We then apply these notions to prove that the collection of multiframe generators for the action of a discrete group on a Hilbert space is norm pathwise-connected precisely when the von Neumann algebra generated by the right representation of the group has no minimal projections. The proof is obtained by parametrizing this collection by a class of partial isometries in a larger von Neumann algebra. In the multiplicity one case this class reduces to the unitary class which is path-connected in norm, but in the infinite multiplicity case this class is path connected only in the strong operator topology and the proof depends on properties of tensor product slice maps.
172 - Hanfeng Li 2009
We show that every infinite-dimensional commutative unital C*-algebra has a Hilbert C*-module admitting no frames. In particular, this shows that Kasparovs stabilization theorem for countably generated Hilbert C*-modules can not be extended to arbitrary Hilbert C*-modules.
The parallel sum for adjoinable operators on Hilbert $C^*$-modules is introduced and studied. Some results known for matrices and bounded linear operators on Hilbert spaces are generalized to the case of adjointable operators on Hilbert $C^*$-modules . It is shown that there exist a Hilbert $C^*$-module $H$ and two positive operators $A, Binmathcal{L}(H)$ such that the operator equation $A^{1/2}=(A+B)^{1/2}X, Xin cal{L}(H)$ has no solution, where $mathcal{L}(H)$ denotes the set of all adjointable operators on $H$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا