ﻻ يوجد ملخص باللغة العربية
A generic method to estimate the relative feasibility of formation of high entropy compounds in a single phase, directly from first principles, is developed. As a first step, the relative formation abilities of 56 multi-component, AO, oxides were evaluated. These were constructed from 5 cation combinations chosen from A={Ca, Co, Cu, Fe, Mg, Mn, Ni, Zn}. Candidates for multi-component oxides are predicted from descriptors related to the enthalpy and configurational entropy obtained from the mixing enthalpies of two component oxides. The utility of this approach is evaluated by comparing the predicted combinations with the experimentally realized entropy stabilized oxide, (MgCoCuNiZn)O. In the second step, Monte Carlo simulations are utilized to investigate the phase composition and local ionic segregation as a function of temperature. This approach allows for the evaluation of potential secondary phases, thereby making realistic predictions of novel multi-component compounds that can be synthesized.
The need for improved functionalities is driving the search for more complicated multi-component materials. Despite the factorially increasing composition space, ordered compounds with 4 or more species are rare. Here, we unveil the competition betwe
Predicting a new Dirac semimetal (DSM), as well as other topological materials, is quite challenging, since the relationship between crystal structure, composing atoms and the band topology is complex and elusive. Here, we demonstrate an approach to
In this paper a generalization of the Cahn-Hilliard theory of binary liquids is presented for multi-component incompressible liquid mixtures. First, a thermodynamically consistent convection-diffusion type dynamics is derived on the basis of the Lagr
When monoclinic monazite-type LaVO4 (space group P21/n) is squeezed up to 12 GPa at room temperature, a phase transition to another monoclinic phase has been found. The structure of the high-pressure phase of LaVO4 is indexed with the same space grou
We report first-principles density-functional study of electron-phonon interactions and thermoelectric transport properties of full-Heusler compounds Sr$_{2}$BiAu and Sr$_{2}$SbAu. Our results show that ultrahigh intrinsic bulk thermoelectric perform