ﻻ يوجد ملخص باللغة العربية
The need for improved functionalities is driving the search for more complicated multi-component materials. Despite the factorially increasing composition space, ordered compounds with 4 or more species are rare. Here, we unveil the competition between the gain in enthalpy and entropy with increasing number of species by statistical analysis of the AFLOW data repositories. A threshold in the number of species is found where entropy gain exceeds enthalpy gain. Beyond that, enthalpy can be neglected, and disorder - complete or partial - is unavoidable.
A generic method to estimate the relative feasibility of formation of high entropy compounds in a single phase, directly from first principles, is developed. As a first step, the relative formation abilities of 56 multi-component, AO, oxides were eva
In this paper, we study the itinerant ferromagnetic phase in multi-component fermionic systems with symplectic (Sp(4), or isomorphically SO(5)) symmetry. Two different microscopic models have been considered and an effective field theory has been pro
The olivine compound Mn2GeO4 is shown to feature both a ferroelectric polarization and a ferromagnetic magnetization that are directly coupled and point along the same direction. We show that a spin spiral generates ferroelectricity (FE), and a cante
High entropy alloys (HEAs) are a series of novel materials that demonstrate many exceptional mechanical properties. To understand the origin of these attractive properties, it is important to investigate the thermodynamics and elucidate the evolution
In this paper a generalization of the Cahn-Hilliard theory of binary liquids is presented for multi-component incompressible liquid mixtures. First, a thermodynamically consistent convection-diffusion type dynamics is derived on the basis of the Lagr