ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the Vulnerability of Deep Neural Networks: A Study of Parameter Corruption

110   0   0.0 ( 0 )
 نشر من قبل Zhiyuan Zhang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We argue that the vulnerability of model parameters is of crucial value to the study of model robustness and generalization but little research has been devoted to understanding this matter. In this work, we propose an indicator to measure the robustness of neural network parameters by exploiting their vulnerability via parameter corruption. The proposed indicator describes the maximum loss variation in the non-trivial worst-case scenario under parameter corruption. For practical purposes, we give a gradient-based estimation, which is far more effective than random corruption trials that can hardly induce the worst accuracy degradation. Equipped with theoretical support and empirical validation, we are able to systematically investigate the robustness of different model parameters and reveal vulnerability of deep neural networks that has been rarely paid attention to before. Moreover, we can enhance the models accordingly with the proposed adversarial corruption-resistant training, which not only improves the parameter robustness but also translates into accuracy elevation.



قيم البحث

اقرأ أيضاً

Parameters in deep neural networks which are trained on large-scale databases can generalize across multiple domains, which is referred as transferability. Unfortunately, the transferability is usually defined as discrete states and it differs with d omains and network architectures. Existing works usually heuristically apply parameter-sharing or fine-tuning, and there is no principled approach to learn a parameter transfer strategy. To address the gap, a parameter transfer unit (PTU) is proposed in this paper. The PTU learns a fine-grained nonlinear combination of activations from both the source and the target domain networks, and subsumes hand-crafted discrete transfer states. In the PTU, the transferability is controlled by two gates which are artificial neurons and can be learned from data. The PTU is a general and flexible module which can be used in both CNNs and RNNs. Experiments are conducted with various network architectures and multiple transfer domain pairs. Results demonstrate the effectiveness of the PTU as it outperforms heuristic parameter-sharing and fine-tuning in most settings.
Due to their increasing spread, confidence in neural network predictions became more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over or under confidence. Many researchers have been working on understanding and quantifying uncertainty in a neural networks prediction. As a result, different types and sources of uncertainty have been identified and a variety of approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. A comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and not reducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks, ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for the calibration of neural networks and give an overview of existing baselines and implementations. Different examples from the wide spectrum of challenges in different fields give an idea of the needs and challenges regarding uncertainties in practical applications. Additionally, the practical limitations of current methods for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.
Local explanation methods, also known as attribution methods, attribute a deep networks prediction to its input (cf. Baehrens et al. (2010)). We respond to the claim from Adebayo et al. (2018) that local explanation methods lack sensitivity, i.e., DN Ns with randomly-initialized weights produce explanations that are both visually and quantitatively similar to those produced by DNNs with learned weights. Further investigation reveals that their findings are due to two choices in their analysis: (a) ignoring the signs of the attributions; and (b) for integrated gradients (IG), including pixels in their analysis that have zero attributions by choice of the baseline (an auxiliary input relative to which the attributions are computed). When both factors are accounted for, IG attributions for a random network and the actual network are uncorrelated. Our investigation also sheds light on how these issues affect visualizations, although we note that more work is needed to understand how viewers interpret the difference between the random and the actual attributions.
Emerging resistive random-access memory (ReRAM) has recently been intensively investigated to accelerate the processing of deep neural networks (DNNs). Due to the in-situ computation capability, analog ReRAM crossbars yield significant throughput imp rovement and energy reduction compared to traditional digital methods. However, the power hungry analog-to-digital converters (ADCs) prevent the practical deployment of ReRAM-based DNN accelerators on end devices with limited chip area and power budget. We observe that due to the limited bit-density of ReRAM cells, DNN weights are bit sliced and correspondingly stored on multiple ReRAM bitlines. The accumulated current on bitlines resulted by weights directly dictates the overhead of ADCs. As such, bitwise weight sparsity rather than the sparsity of the full weight, is desirable for efficient ReRAM deployment. In this work, we propose bit-slice L1, the first algorithm to induce bit-slice sparsity during the training of dynamic fixed-point DNNs. Experiment results show that our approach achieves 2x sparsity improvement compared to previous algorithms. The resulting sparsity allows the ADC resolution to be reduced to 1-bit of the most significant bit-slice and down to 3-bit for the others bits, which significantly speeds up processing and reduces power and area overhead.
116 - Sen Lu , Abhronil Sengupta 2020
On-chip edge intelligence has necessitated the exploration of algorithmic techniques to reduce the compute requirements of current machine learning frameworks. This work aims to bridge the recent algorithmic progress in training Binary Neural Network s and Spiking Neural Networks - both of which are driven by the same motivation and yet synergies between the two have not been fully explored. We show that training Spiking Neural Networks in the extreme quantization regime results in near full precision accuracies on large-scale datasets like CIFAR-$100$ and ImageNet. An important implication of this work is that Binary Spiking Neural Networks can be enabled by In-Memory hardware accelerators catered for Binary Neural Networks without suffering any accuracy degradation due to binarization. We utilize standard training techniques for non-spiking networks to generate our spiking networks by conversion process and also perform an extensive empirical analysis and explore simple design-time and run-time optimization techniques for reducing inference latency of spiking networks (both for binary and full-precision models) by an order of magnitude over prior work.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا