ترغب بنشر مسار تعليمي؟ اضغط هنا

Parameter Transfer Unit for Deep Neural Networks

107   0   0.0 ( 0 )
 نشر من قبل Yinghua Zhang
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Parameters in deep neural networks which are trained on large-scale databases can generalize across multiple domains, which is referred as transferability. Unfortunately, the transferability is usually defined as discrete states and it differs with domains and network architectures. Existing works usually heuristically apply parameter-sharing or fine-tuning, and there is no principled approach to learn a parameter transfer strategy. To address the gap, a parameter transfer unit (PTU) is proposed in this paper. The PTU learns a fine-grained nonlinear combination of activations from both the source and the target domain networks, and subsumes hand-crafted discrete transfer states. In the PTU, the transferability is controlled by two gates which are artificial neurons and can be learned from data. The PTU is a general and flexible module which can be used in both CNNs and RNNs. Experiments are conducted with various network architectures and multiple transfer domain pairs. Results demonstrate the effectiveness of the PTU as it outperforms heuristic parameter-sharing and fine-tuning in most settings.



قيم البحث

اقرأ أيضاً

We argue that the vulnerability of model parameters is of crucial value to the study of model robustness and generalization but little research has been devoted to understanding this matter. In this work, we propose an indicator to measure the robust ness of neural network parameters by exploiting their vulnerability via parameter corruption. The proposed indicator describes the maximum loss variation in the non-trivial worst-case scenario under parameter corruption. For practical purposes, we give a gradient-based estimation, which is far more effective than random corruption trials that can hardly induce the worst accuracy degradation. Equipped with theoretical support and empirical validation, we are able to systematically investigate the robustness of different model parameters and reveal vulnerability of deep neural networks that has been rarely paid attention to before. Moreover, we can enhance the models accordingly with the proposed adversarial corruption-resistant training, which not only improves the parameter robustness but also translates into accuracy elevation.
Local explanation methods, also known as attribution methods, attribute a deep networks prediction to its input (cf. Baehrens et al. (2010)). We respond to the claim from Adebayo et al. (2018) that local explanation methods lack sensitivity, i.e., DN Ns with randomly-initialized weights produce explanations that are both visually and quantitatively similar to those produced by DNNs with learned weights. Further investigation reveals that their findings are due to two choices in their analysis: (a) ignoring the signs of the attributions; and (b) for integrated gradients (IG), including pixels in their analysis that have zero attributions by choice of the baseline (an auxiliary input relative to which the attributions are computed). When both factors are accounted for, IG attributions for a random network and the actual network are uncorrelated. Our investigation also sheds light on how these issues affect visualizations, although we note that more work is needed to understand how viewers interpret the difference between the random and the actual attributions.
Deep neural networks are widely used for nonlinear function approximation with applications ranging from computer vision to control. Although these networks involve the composition of simple arithmetic operations, it can be very challenging to verify whether a particular network satisfies certain input-output properties. This article surveys methods that have emerged recently for soundly verifying such properties. These methods borrow insights from reachability analysis, optimization, and search. We discuss fundamental differences and connections between existing algorithms. In addition, we provide pedagogical implementations of existing methods and compare them on a set of benchmark problems.
Quantifying the information content in a neural network model is essentially estimating the models Kolmogorov complexity. Recent success of prequential coding on neural networks points to a promising path of deriving an efficient description length o f a model. We propose a practical measure of the generalizable information in a neural network model based on prequential coding, which we term Information Transfer ($L_{IT}$). Theoretically, $L_{IT}$ is an estimation of the generalizable part of a models information content. In experiments, we show that $L_{IT}$ is consistently correlated with generalizable information and can be used as a measure of patterns or knowledge in a model or a dataset. Consequently, $L_{IT}$ can serve as a useful analysis tool in deep learning. In this paper, we apply $L_{IT}$ to compare and dissect information in datasets, evaluate representation models in transfer learning, and analyze catastrophic forgetting and continual learning algorithms. $L_{IT}$ provides an information perspective which helps us discover new insights into neural network learning.
Despite the functional success of deep neural networks (DNNs), their trustworthiness remains a crucial open challenge. To address this challenge, both testing and verification techniques have been proposed. But these existing techniques provide eithe r scalability to large networks or formal guarantees, not both. In this paper, we propose a scalable quantitative verification framework for deep neural networks, i.e., a test-driven approach that comes with formal guarantees that a desired probabilistic property is satisfied. Our technique performs enough tests until soundness of a formal probabilistic property can be proven. It can be used to certify properties of both deterministic and randomized DNNs. We implement our approach in a tool called PROVERO and apply it in the context of certifying adversarial robustness of DNNs. In this context, we first show a new attack-agnostic measure of robustness which offers an alternative to purely attack-based methodology of evaluating robustness being reported today. Second, PROVERO provides certificates of robustness for large DNNs, where existing state-of-the-art verification tools fail to produce conclusive results. Our work paves the way forward for verifying properties of distributions captured by real-world deep neural networks, with provable guarantees, even where testers only have black-box access to the neural network.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا