ﻻ يوجد ملخص باللغة العربية
On-chip edge intelligence has necessitated the exploration of algorithmic techniques to reduce the compute requirements of current machine learning frameworks. This work aims to bridge the recent algorithmic progress in training Binary Neural Networks and Spiking Neural Networks - both of which are driven by the same motivation and yet synergies between the two have not been fully explored. We show that training Spiking Neural Networks in the extreme quantization regime results in near full precision accuracies on large-scale datasets like CIFAR-$100$ and ImageNet. An important implication of this work is that Binary Spiking Neural Networks can be enabled by In-Memory hardware accelerators catered for Binary Neural Networks without suffering any accuracy degradation due to binarization. We utilize standard training techniques for non-spiking networks to generate our spiking networks by conversion process and also perform an extensive empirical analysis and explore simple design-time and run-time optimization techniques for reducing inference latency of spiking networks (both for binary and full-precision models) by an order of magnitude over prior work.
Several recent works have shown separation results between deep neural networks, and hypothesis classes with inferior approximation capacity such as shallow networks or kernel classes. On the other hand, the fact that deep networks can efficiently ex
Knowledge distillation is a generalized logits matching technique for model compression. Their equivalence is previously established on the condition of $textit{infinity temperature}$ and $textit{zero-mean normalization}$. In this paper, we prove tha
Artificial Neural Network (ANN)-based inference on battery-powered devices can be made more energy-efficient by restricting the synaptic weights to be binary, hence eliminating the need to perform multiplications. An alternative, emerging, approach r
We establish connections between the problem of learning a two-layer neural network and tensor decomposition. We consider a model with feature vectors $boldsymbol x in mathbb R^d$, $r$ hidden units with weights ${boldsymbol w_i}_{1le i le r}$ and out
As neural networks get widespread adoption in resource-constrained embedded devices, there is a growing need for low-power neural systems. Spiking Neural Networks (SNNs)are emerging to be an energy-efficient alternative to the traditional Artificial