ﻻ يوجد ملخص باللغة العربية
An algebraic lower bound on the energy decay for solutions of the advection-diffusion equation in $mathbb{R}^d$ with $d=2,3$ is derived using the Fourier splitting method. Motivated by a conjecture on mixing of passive scalars in fluids, a lower bound on the $L^2-$ norm of the inverse gradient of the solution is obtained via gradient estimates and interpolation.
We consider the Cauchy problem for the nonlinear wave equation $u_{tt} - Delta_x u +q(t, x) u + u^3 = 0$ with smooth potential $q(t, x) geq 0$ having compact support with respect to $x$. The linear equation without the nonlinear term $u^3$ and potent
We prove global well-posedness for the $3D$ radial defocusing cubic wave equation with data in $H^{s} times H^{s-1}$, $1>s>{7/10}$.
We prove $L^p$ lower bounds for Coulomb energy for radially symmetric functions in $dot H^s(R^3)$ with $frac 12 <s<frac{3}{2}$. In case $frac 12 <s leq 1$ we show that the lower bounds are sharp.
In this paper, we use Dafermos-Rodnianskis new vector field method to study the asymptotic pointwise decay properties for solutions of energy subcritical defocusing semilinear wave equations in $mathbb{R}^{1+3}$. We prove that the solution decays as
We study mass preserving transport of passive tracers in the low-diffusivity limit using Lagrangian coordinates. Over finite-time intervals, the solution-operator of the nonautonomous diffusion equation is approximated by that of a time-averaged diff