ﻻ يوجد ملخص باللغة العربية
In this paper, we use Dafermos-Rodnianskis new vector field method to study the asymptotic pointwise decay properties for solutions of energy subcritical defocusing semilinear wave equations in $mathbb{R}^{1+3}$. We prove that the solution decays as quickly as linear waves for $p>frac{1+sqrt{17}}{2}$, covering part of the sub-conformal case, while for the range $2<pleq frac{1+sqrt{17}}{2}$, the solution still decays with rate at least $t^{-frac{1}{3}}$. As a consequence, the solution scatters in energy space when $p>2.3542$. We also show that the solution is uniformly bounded when $p>frac{3}{2}$.
This paper is devoted to the study of asymptotic behaviors of solutions to the one-dimensional defocusing semilinear wave equation. We prove that finite energy solution tends to zero in the pointwise sense, hence improving the averaged decay of Lindb
We prove that solution of defocusing semilinear wave equation in $mathbb{R}^{1+3}$ with pure power nonlinearity is uniformly bounded for all $frac{3}{2}<pleq 2$ with sufficiently smooth and localized data. The result relies on the $r$-weighted energy
This paper is concerned with the existence of ground states for a class of Kirchhoff type equation with combined power nonlinearities begin{equation*} -left(a+bint_{mathbb{R}^{3}}| abla u(x)|^{2}right) Delta u =lambda u+|u|^{p-2}u+u^{5}quad text{for
In this paper, we study the asymptotic decay properties for defocusing semilinear wave equations in $mathbb{R}^{1+2}$ with pure power nonlinearity. By applying new vector fields to null hyperplane, we derive improved time decay of the potential energ
We prove global well-posedness for the $3D$ radial defocusing cubic wave equation with data in $H^{s} times H^{s-1}$, $1>s>{7/10}$.