ترغب بنشر مسار تعليمي؟ اضغط هنا

A Lagrangian perspective on nonautonomous advection-diffusion processes in the low-diffusivity limit

66   0   0.0 ( 0 )
 نشر من قبل Daniel Karrasch
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study mass preserving transport of passive tracers in the low-diffusivity limit using Lagrangian coordinates. Over finite-time intervals, the solution-operator of the nonautonomous diffusion equation is approximated by that of a time-averaged diffusion equation. We show that leading order asymptotics that hold for functions [Krol, 1991] extend to the dominant nontrivial singular value. This answers questions raised in [Karrasch & Keller, 2020]. The generator of the time-averaged diffusion/heat semigroup is a Laplace operator associated to a weighted manifold structure on the material manifold. We show how geometrical properties of this weighted manifold directly lead to physical transport quantities of the nonautonomous equation in the low-diffusivity limit.



قيم البحث

اقرأ أيضاً

An algebraic lower bound on the energy decay for solutions of the advection-diffusion equation in $mathbb{R}^d$ with $d=2,3$ is derived using the Fourier splitting method. Motivated by a conjecture on mixing of passive scalars in fluids, a lower boun d on the $L^2-$ norm of the inverse gradient of the solution is obtained via gradient estimates and interpolation.
The diffusivity $D(t)$ of finite-range asymmetric exclusion processes on $mathbb Z$ with non-zero drift is expected to be of order $t^{1/3}$. Sepp{a}lainen and Balazs recently proved this conjecture for the nearest neighbor case. We extend their resu lts to general finite range exclusion by proving that the Laplace transform of the diffusivity is of the conjectured order. We also obtain a pointwise upper bound for $D(t)$ the correct order.
In {em{Holm}, Proc. Roy. Soc. A 471 (2015)} stochastic fluid equations were derived by employing a variational principle with an assumed stochastic Lagrangian particle dynamics. Here we show that the same stochastic Lagrangian dynamics naturally aris es in a multi-scale decomposition of the deterministic Lagrangian flow map into a slow large-scale mean and a rapidly fluctuating small scale map. We employ homogenization theory to derive effective slow stochastic particle dynamics for the resolved mean part, thereby justifying stochastic fluid partial equations in the Eulerian formulation. To justify the application of rigorous homogenization theory, we assume mildly chaotic fast small-scale dynamics, as well as a centering condition. The latter requires that the mean of the fluctuating deviations is small, when pulled back to the mean flow.
The Persistent Turning Walker Model (PTWM) was introduced by Gautrais et al in Mathematical Biology for the modelling of fish motion. It involves a nonlinear pathwise functional of a non-elliptic hypo-elliptic diffusion. This diffusion solves a kinet ic Fokker-Planck equation based on an Ornstein-Uhlenbeck Gaussian process. The long time diffusive behavior of this model was recently studied by Degond & Motsch using partial differential equations techniques. This model is however intrinsically probabilistic. In the present paper, we show how the long time diffusive behavior of this model can be essentially recovered and extended by using appropriate tools from stochastic analysis. The approach can be adapted to many other kinetic probabilistic models.
We discuss the effects of movement and spatial heterogeneity on population dynamics via reaction-diffusion-advection models, focusing on the persistence, competition, and evolution of organisms in spatially heterogeneous environments. Topics include Lokta-Volterra competition models, river models, evolution of biased movement, phytoplankton growth, and spatial spread of epidemic disease. Open problems and conjectures are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا