ﻻ يوجد ملخص باللغة العربية
For a finite point set in $mathbb{R}^d$, we consider a peeling process where the vertices of the convex hull are removed at each step. The layer number $L(X)$ of a given point set $X$ is defined as the number of steps of the peeling process in order to delete all points in $X$. It is known that if $X$ is a set of random points in $mathbb{R}^d$, then the expectation of $L(X)$ is $Theta(|X|^{2/(d+1)})$, and recently it was shown that if $X$ is a point set of the square grid on the plane, then $L(X)=Theta(|X|^{2/3})$. In this paper, we investigate the layer number of $alpha$-evenly distributed point sets for $alpha>1$; these point sets share the regularity aspect of random point sets but in a more general setting. The set of lattice points is also an $alpha$-evenly distributed point set for some $alpha>1$. We find an upper bound of $O(|X|^{3/4})$ for the layer number of an $alpha$-evenly distributed point set $X$ in a unit disk on the plane for some $alpha>1$, and provide an explicit construction that shows the growth rate of this upper bound cannot be improved. In addition, we give an upper bound of $O(|X|^{frac{d+1}{2d}})$ for the layer number of an $alpha$-evenly distributed point set $X$ in a unit ball in $mathbb{R}^d$ for some $alpha>1$ and $dgeq 3$.
Evenly convex sets in a topological vector space are defined as the intersection of a family of open half spaces. We introduce a generalization of this concept in the conditional framework and provide a generalized version of the bipolar theorem. Thi
We count the ordered sum-free triplets of subsets in the group $mathbb{Z}/pmathbb{Z}$, i.e., the triplets $(A,B,C)$ of sets $A,B,C subset mathbb{Z}/pmathbb{Z}$ for which the equation $a+b=c$ has no solution with $ain A$, $b in B$ and $c in C$. Our ma
This paper studies problems related to visibility among points in the plane. A point $x$ emph{blocks} two points $v$ and $w$ if $x$ is in the interior of the line segment $bar{vw}$. A set of points $P$ is emph{$k$-blocked} if each point in $P$ is ass
A subset of vertices is a {it maximum independent set} if no two of the vertices are adjacent and the subset has maximum cardinality. A subset of vertices is called a {it maximum dissociation set} if it induces a subgraph with vertex degree at most 1
Let $T$ be a rooted tree, and $V(T)$ its set of vertices. A subset $X$ of $V(T)$ is called an infima closed set of $T$ if for any two vertices $u,vin X$, the first common ancestor of $u$ and $v$ is also in $X$. This paper determines the trees with mi