ﻻ يوجد ملخص باللغة العربية
Slow-roll inflation may simultaneously solve the horizon problem and generate a near scale-free fluctuation spectrum P(k). These two processes are intimately connected via the initiation and duration of the inflationary phase. But a recent study based on the latest Planck release suggests that P(k) has a hard cutoff, k_min > 0, inconsistent with this conventional picture. Here we demonstrate quantitatively that most---perhaps all---slow-roll inflationary models fail to accommodate this minimum cutoff. We show that the small parameter `epsilon must be > 0.9 throughout the inflationary period to comply with the data, seriously violating the slow-roll approximation. Models with such an epsilon predict extremely red spectral indices, at odds with the measured value. We also consider extensions to the basic picture (suggested by several earlier workers) by adding a kinetic-dominated or radiation-dominated phase preceding the slow-roll expansion. Our approach differs from previously published treatments principally because we require these modifications to---not only fit the measured fluctuation spectrum, but to simultaneously also---fix the horizon problem. We show, however, that even such measures preclude a joint resolution of the horizon problem and the missing correlations at large angles.
Multiple inflation is a model based on N=1 supergravity wherein there are sudden changes in the mass of the inflaton because it couples to flat direction scalar fields which undergo symmetry breaking phase transitions as the universe cools. The resul
We present a complete formulation of the scalar bispectrum in the unified effective field theory (EFT) of inflation, which includes the Horndeski and beyond-Horndeski Gleyzes-Langlois-Piazza-Vernizzi classes, in terms of a set of simple one-dimension
The possibility that primordial black holes constitute a fraction of dark matter motivates a detailed study of possible mechanisms for their production. Black holes can form by the collapse of primordial curvature fluctuations, if the amplitude of th
We take a pragmatic, model independent approach to single field slow-roll canonical inflation by imposing conditions, not on the potential, but on the slow-roll parameter $epsilon(phi)$ and its derivatives $epsilon^{prime }(phi)$ and $epsilon^{primep
We numerically calculate the evolution of second order cosmological perturbations for an inflationary scalar field without resorting to the slow-roll approximation or assuming large scales. In contrast to previous approaches we therefore use the full