ﻻ يوجد ملخص باللغة العربية
Multiple inflation is a model based on N=1 supergravity wherein there are sudden changes in the mass of the inflaton because it couples to flat direction scalar fields which undergo symmetry breaking phase transitions as the universe cools. The resulting brief violations of slow-roll evolution generate a non-gaussian signal which we find to be oscillatory and yielding f_NL ~ 5-20. This is potentially detectable by e.g. Planck but would require new bispectrum estimators to do so. We also derive a model-independent result relating the period of oscillations of a phase transition during inflation to the period of oscillations in the primordial curvature perturbation generated by the inflaton.
The non-Gaussian distribution of primordial perturbations has the potential to reveal the physical processes at work in the very early Universe. Local models provide a well-defined class of non-Gaussian distributions that arise naturally from the non
Non-attractor inflation is known as the only single field inflationary scenario that can violate non-Gaussianity consistency relation with the Bunch-Davies vacuum state and generate large local non-Gaussianity. However, it is also known that the non-
We use the long-wavelength formalism to investigate the level of bispectral non-Gaussianity produced in two-field inflation models with standard kinetic terms. Even though the Planck satellite has so far not detected any primordial non-Gaussianity, i
We take a pragmatic, model independent approach to single field slow-roll canonical inflation by imposing conditions, not on the potential, but on the slow-roll parameter $epsilon(phi)$ and its derivatives $epsilon^{prime }(phi)$ and $epsilon^{primep
We numerically calculate the evolution of second order cosmological perturbations for an inflationary scalar field without resorting to the slow-roll approximation or assuming large scales. In contrast to previous approaches we therefore use the full