ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalar Bispectrum Beyond Slow-Roll in the Unified EFT of Inflation

86   0   0.0 ( 0 )
 نشر من قبل Samuel Passaglia
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a complete formulation of the scalar bispectrum in the unified effective field theory (EFT) of inflation, which includes the Horndeski and beyond-Horndeski Gleyzes-Langlois-Piazza-Vernizzi classes, in terms of a set of simple one-dimensional integrals. These generalized slow-roll expressions remain valid even when slow-roll is transiently violated and encompass all configurations of the bispectrum. We show analytically that our expressions explicitly preserve the squeezed-limit consistency relation beyond slow-roll. As an example application of our results, we compute the scalar bispectrum in a model in which potential-driven G-inflation at early times transitions to chaotic inflation at late times, showing that our expressions accurately track the bispectrum when slow-roll is violated and conventional slow-roll approximations fail.



قيم البحث

اقرأ أيضاً

159 - Ian Huston , Karim A. Malik 2011
We numerically calculate the evolution of second order cosmological perturbations for an inflationary scalar field without resorting to the slow-roll approximation or assuming large scales. In contrast to previous approaches we therefore use the full non-slow-roll source term for the second order Klein-Gordon equation which is valid on all scales. The numerical results are consistent with the ones obtained previously where slow-roll is a good approximation. We investigate the effect of localised features in the scalar field potential which break slow-roll for some portion of the evolution. The numerical package solving the second order Klein-Gordon equation has been released under an open source license and is available for download.
We take a pragmatic, model independent approach to single field slow-roll canonical inflation by imposing conditions, not on the potential, but on the slow-roll parameter $epsilon(phi)$ and its derivatives $epsilon^{prime }(phi)$ and $epsilon^{primep rime }(phi)$, thereby extracting general conditions on the tensor-to-scalar ratio $r$ and the running $n_{sk}$ at $phi_{H}$ where the perturbations are produced, some $50$ $-$ $60$ $e$-folds before the end of inflation. We find quite generally that for models where $epsilon(phi)$ develops a maximum, a relatively large $r$ is most likely accompanied by a positive running while a negligible tensor-to-scalar ratio implies negative running. The definitive answer, however, is given in terms of the slow-roll parameter $xi_2(phi)$. To accommodate a large tensor-to-scalar ratio that meets the limiting values allowed by the Planck data, we study a non-monotonic $epsilon(phi)$ decreasing during most part of inflation. Since at $phi_{H}$ the slow-roll parameter $epsilon(phi)$ is increasing, we thus require that $epsilon(phi)$ develops a maximum for $phi > phi_{H}$ after which $epsilon(phi)$ decrease to small values where most $e$-folds are produced. The end of inflation might occur trough a hybrid mechanism and a small field excursion $Deltaphi_eequiv |phi_H-phi_e |$ is obtained with a sufficiently thin profile for $epsilon(phi)$ which, however, should not conflict with the second slow-roll parameter $eta(phi)$. As a consequence of this analysis we find bounds for $Delta phi_e$, $r_H$ and for the scalar spectral index $n_{sH}$. Finally we provide examples where these considerations are explicitly realised.
Multiple inflation is a model based on N=1 supergravity wherein there are sudden changes in the mass of the inflaton because it couples to flat direction scalar fields which undergo symmetry breaking phase transitions as the universe cools. The resul ting brief violations of slow-roll evolution generate a non-gaussian signal which we find to be oscillatory and yielding f_NL ~ 5-20. This is potentially detectable by e.g. Planck but would require new bispectrum estimators to do so. We also derive a model-independent result relating the period of oscillations of a phase transition during inflation to the period of oscillations in the primordial curvature perturbation generated by the inflaton.
82 - Haoran Di , Yungui Gong 2017
The next generation of space-borne gravitational wave detectors may detect gravitational waves from extreme mass-ratio inspirals with primordial black holes. To produce primordial black holes which contribute a non-negligible abundance of dark matter and are consistent with the observations, a large enhancement in the primordial curvature power spectrum is needed. For a single field slow-roll inflation, the enhancement requires a very flat potential for the inflaton, and this will increase the number of $e$-folds. To avoid the problem, an ultra-slow-roll inflation at the near inflection point is required. We elaborate the conditions to successfully produce primordial black hole dark matter from single field inflation and propose a toy model with polynomial potential to realize the big enhancement of the curvature power spectrum at small scales while maintaining the consistency with the observations at large scales. The power spectrum for the second order gravitational waves generated by the large density perturbations at small scales is consistent with the current pulsar timing array observations.
Inflation is often described through the dynamics of a scalar field, slow-rolling in a suitable potential. Ultimately, this inflaton must be identified as the expectation value of a quantum field, evolving in a quantum effective potential. The shape of this potential is determined by the underlying tree-level potential, dressed by quantum corrections from the scalar field itself and the metric perturbations. Following [1], we compute the effective scalar field equations and the corrected Friedmann equations to quadratic order in both scalar field, scalar metric and tensor perturbations. We identify the quantum corrections from different sources at leading order in slow-roll, and estimate their magnitude in benchmark models of inflation. We comment on the implications of non-minimal coupling to gravity in this context.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا