ﻻ يوجد ملخص باللغة العربية
Next generation wound care technology capable of diagnosing wound parameters, promoting healthy cell growth and reducing pathogenic infections noninvasively will provide patients with an improved standard of care and an accelerated wound repair. Temperature is one of the indicating biomarkers specific to chronic wounds. This work reports a hybrid, multifunctional optical platform: nanodiamond-silk membranes as bioinspired dressings capable of temperature sensing and wound healing. The hybrid was fabricated through electrospinning and formed sub-micron fibrous membranes with high porosity. The silk fibres are capable of compensating for the lack of extracellular matrix at the wound site, supporting the wound healing. The negatively charged nitrogen vacancy (NV-) color centres in nanodiamonds (NDs) exhibit optically detected magnetic resonance (ODMR) properties and act as fluorescent nanoscale thermometers, capable of sensing temperature variations associated to the presence of infection or inflammation in a wound, without physically removing the dressing. Our results show that the presence of NDs in the hybrid ND-silk membranes improve the thermal stability of silk fibres. The NV- color centres in NDs embedded in silk fibres exhibit well-retained fluorescent and ODMR. Using the NV- centres as fluorescent nanoscale thermometers, we achieved temperature sensing at a range of temperatures, including the biologically relevant temperature window, on cell-cultured ND-silk membranes. Enhancement in the temperature sensitivity of the NV- centres was observed for the hybrids. The membranes were further tested in vivo in a murine wound healing model and demonstrated biocompatibility and equivalent wound closure rates as the control wounds. Additionally, the hybrid ND-silk membranes showed selective antifouling and biocidal propensity toward Gram-negative Pseudomonas aeruginosa and Escherichia coli.
We present a discrete stochastic model which represents many of the salient features of the biological process of wound healing. The model describes fronts of cells invading a wound. We have numerical results in one and two dimensions. In one dimensi
We have experimentally demonstrated an on-chip all-silk fibroin whispering gallery mode microresonator by using a simple molding and solution-casting technique. The quality factors of the fabricated silk protein microresonators are up to 10^5. A high
We prove the existence of novel, shock-fronted travelling wave solutions to a model of wound healing angiogenesis studied in Pettet et al., IMA J. Math. App. Med., 17, 2000. In this work, the authors showed that for certain parameter values, a hetero
Understanding the human brain remains one of the most significant challenges of the 21st century. As theoretical studies continue to improve the description of the complex mechanisms that regulate biological processes, in parallel numerous experiment
Nano-thick metallic transition metal dichalcogenides such as VS$_{2}$ are essential building blocks for constructing next-generation electronic and energy-storage applications, as well as for exploring unique physical issues associated with the dimen