ﻻ يوجد ملخص باللغة العربية
Understanding the human brain remains one of the most significant challenges of the 21st century. As theoretical studies continue to improve the description of the complex mechanisms that regulate biological processes, in parallel numerous experiments are conducted to enrich or verify these theoretical predictions and with the aim of extrapolating more accurate models. In the field of magnetometers for biological application, among the various sensors proposed for this purpose, NV centers have emerged as a promising solution due to their perfect biocompatibility and the possibility of being positioned in close proximity and even inside the cell, allowing a nanometric spatial resolution. There are still many difficulties that must be overcome in order to obtain both spatial resolution and sensitivity capable of revealing the very weak biological electromagnetic fields generated by neurons (or other cells). However, over the last few years, significant improvements have been achieved in this direction, thanks to the use of innovative techniques, which allow us to hope for an early application of these sensors for the measurement of fields such as the one generated by cardiac tissue, if not, in perspective, for the nerve fibers fields. In this review, we will analyze the new results regarding the application of NV centers and we will discuss the main challenges that currently prevent these quantum sensors from reaching their full potential.
Quantum sensing, quantum networking and communication, and quantum computing have attracted significant attention recently, as these quantum technologies offer significant advantages over existing technologies. In order to accelerate the commercializ
Sensors that are able to detect and track single unlabelled biomolecules are an important tool both to understand biomolecular dynamics and interactions at nanoscale, and for medical diagnostics operating at their ultimate detection limits. Recently,
Next generation wound care technology capable of diagnosing wound parameters, promoting healthy cell growth and reducing pathogenic infections noninvasively will provide patients with an improved standard of care and an accelerated wound repair. Temp
This paper presents a minimal formulation of nonrelativistic quantum mechanics, by which is meant a formulation which describes the theory in a succinct, self-contained, clear, unambiguous and of course correct manner. The bulk of the presentation is
We show that quantum mechanics is the first theory in human history that violates the basic a priori principles that have shaped human thought since immemorial times. Therefore although it is more contrary to magic than any body of knowledge could be