ﻻ يوجد ملخص باللغة العربية
The small dispersion limit of the focusing nonlinear Schrodinger equation with periodic initial conditions is studied analytically and numerically. First, through a comprehensive set of numerical simulations, it is demonstrated that solutions arising from a certain class of initial conditions, referred to as periodic single-lobe potentials, share the same qualitative features, which also coincide with those of solutions arising from localized initial conditions. The spectrum of the associated scattering problem in each of these cases is then numerically computed, and it is shown that such spectrum is confined to the real and imaginary axes of the spectral variable in the semiclassical limit. This implies that all nonlinear excitations emerging from the input have zero velocity, and form a coherent nonlinear condensate. Finally, by employing a formal Wentzel-Kramers-Brillouin expansion for the scattering eigenfunctions, asymptotic expressions for the number and location of the bands and gaps in the spectrum are obtained, as well as corresponding expressions for the relative band widths and the number of effective solitons. These results are shown to be in excellent agreement with those from direct numerical computation of the eigenfunctions. In particular, a scaling law is obtained showing that the number of effective solitons is inversely proportional to the small dispersion parameter.
The double-periodic solutions of the focusing nonlinear Schrodinger equation have been previously obtained by the method of separation of variables. We construct these solutions by using an algebraic method with two eigenvalues. Furthermore, we chara
We address the degree of universality of the Fermi-Pasta-Ulam recurrence induced by multisoliton fission from a harmonic excitation by analysing the case of the semiclassical defocusing nonlinear Schrodinger equation, which models nonlinear wave prop
We derive the complex Ginzburg-Landau equation for the dynamical self-diffraction of optical waves in a nonlinear cavity. The case of the reflection geometry of wave interaction as well as a medium that possesses the cubic nonlinearity (including a l
We propose new type of discrete and ultradiscrete soliton equations, which admit extended soliton solution called periodic phase soliton solution. The discrete equation is derived from the discrete DKP equation and the ultradiscrete one is obtained b
We consider the one-dimensional totally asymmetric simple exclusion process with an arbitrary initial condition in a spatially periodic domain, and obtain explicit formulas for the multi-point distributions in the space-time plane. The formulas are g