ترغب بنشر مسار تعليمي؟ اضغط هنا

Discrete and Ultradiscrete Periodic Phase Soliton Equations

55   0   0.0 ( 0 )
 نشر من قبل Hidetomo Nagai
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose new type of discrete and ultradiscrete soliton equations, which admit extended soliton solution called periodic phase soliton solution. The discrete equation is derived from the discrete DKP equation and the ultradiscrete one is obtained by applying the ultradiscrete limit. The soliton solutions have internal freedom and change their shape periodically during propagation. In particular, the ultradiscrete solution reduces into the solution to the ultradiscrete hungry Lotka-Volterra equation in a special case.



قيم البحث

اقرأ أيضاً

The Laplacian growth (the Hele-Shaw problem) of multi-connected domains in the case of zero surface tension is proven to be equivalent to an integrable systems of Whitham equations known in soliton theory. The Whitham equations describe slowly modula ted periodic solutions of integrable hierarchies of nonlinear differential equations. Through this connection the Laplacian growth is understood as a flow in the moduli space of Riemann surfaces.
Over the last decade it has become clear that discrete Painleve equations appear in a wide range of important mathematical and physical problems. Thus, the question of recognizing a given non-autonomous recurrence as a discrete Painleve equation and determining its type according to Sakais classification scheme, understanding whether it is equivalent to some known (model) example, and especially finding an explicit change of coordinates transforming it to such an example, becomes one of the central ones. Fortunately, Sakais geometric theory provides an almost algorithmic procedure for answering this question. In this paper we illustrate this procedure by studying an example coming from the theory of discrete orthogonal polynomials. There are many connections between orthogonal polynomials and Painleve equations, both differential and discrete. In particular, often the coefficients of three-term recurrence relations for discrete orthogonal polynomials can be expressed in terms of solutions of discrete Painleve equations. In this work we study discrete orthogonal polynomials with general hypergeometric weight and show that their recurrence coefficients satisfy, after some change of variables, the standard discrete Painleve-V equation. We also provide an explicit change of variables transforming this equation to the standard form.
We apply the method of nonlinear steepest descent to compute the long-time asymptotics of the periodic (and slightly more generally of the quasi-periodic finite-gap) Toda lattice for decaying initial data in the soliton region. In addition, we show h ow to reduce the problem in the remaining region to the known case without solitons.
51 - M. Boiti 2002
A recently proposed discrete version of the Schrodinger spectral problem is considered. The whole hierarchy of differential-difference nonlinear evolution equations associated to this spectral problem is derived. It is shown that a discrete version o f the KdV, sine-Gordon and Liouville equations are included and that the so called `inverse class in the hierarchy is local. The whole class of related Darboux and Backlund transformations is also exhibited.
77 - Kazuki Maeda 2017
A nonautonomous version of the ultradiscrete hungry Toda lattice with a finite lattice boundary condition is derived by applying reduction and ultradiscretization to a nonautonomous two-dimensional discrete Toda lattice. It is shown that the derived ultradiscrete system has a direct connection to the box-ball system with many kinds of balls and finite carrier capacity. Particular solutions to the ultradiscrete system are constructed by using the theory of some sort of discrete biorthogonal polynomials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا