ﻻ يوجد ملخص باللغة العربية
In this paper, we solve the local gathering problem of a swarm of $n$ indistinguishable, point-shaped robots on a two dimensional grid in asymptotically optimal time $mathcal{O}(n)$ in the fully synchronous $mathcal{FSYNC}$ time model. Given an arbitrarily distributed (yet connected) swarm of robots, the gathering problem on the grid is to locate all robots within a $2times 2$-sized area that is not known beforehand. Two robots are connected if they are vertical or horizontal neighbors on the grid. The locality constraint means that no global control, no compass, no global communication and only local vision is available; hence, a robot can only see its grid neighbors up to a constant $L_1$-distance, which also limits its movements. A robot can move to one of its eight neighboring grid cells and if two or more robots move to the same location they are emph{merged} to be only one robot. The locality constraint is the significant challenging issue here, since robot movements must not harm the (only globally checkable) swarm connectivity. For solving the gathering problem, we provide a synchronous algorithm -- executed by every robot -- which ensures that robots merge without breaking the swarm connectivity. In our model, robots can obtain a special state, which marks such a robot to be performing specific connectivity preserving movements in order to allow later merge operations of the swarm. Compared to the grid, for gathering in the Euclidean plane for the same robot and time model the best known upper bound is $mathcal{O}(n^2)$.
We consider a swarm of $n$ autonomous mobile robots, distributed on a 2-dimensional grid. A basic task for such a swarm is the gathering process: All robots have to gather at one (not predefined) place. A common local model for extremely simple robot
We consider the following variant of the two dimensional gathering problem for swarms of robots: Given a swarm of $n$ indistinguishable, point shaped robots on a two dimensional grid. Initially, the robots form a closed chain on the grid and must kee
We study the problem of exploring an oriented grid with autonomous agents governed by finite automata. In the case of a 2-dimensional grid, the question how many agents are required to explore the grid, or equivalently, find a hidden treasure in the
Applications of safety, security, and rescue in robotics, such as multi-robot target tracking, involve the execution of information acquisition tasks by teams of mobile robots. However, in failure-prone or adversarial environments, robots get attacke
Gracefully degrading algorithms [Biely etal, TCS 2018] are designed to circumvent impossibility results in dynamic systems by adapting themselves to the dynamics. Indeed, such an algorithm solves a given problem under some dynamics and, moreover, gua