ﻻ يوجد ملخص باللغة العربية
In Pop III stellar models convection-induced mixing between H- and He-rich burning layers can induce a burst of nuclear energy and thereby substantially alter the subsequent evolution and nucleosynthesis in the first massive stars. We investigate H-He shell and core interactions in 26 stellar evolution simulations with masses $15 - 140,mathrm{M}_{odot}$, using five sets of mixing assumptions. In 22 cases H-He interactions induce local nuclear energy release in the range $ sim 10^{9} - 10^{13.5},mathrm{L}_{odot}$. The luminosities on the upper end of this range amount to a substantial fraction of the layers internal energy over a convective advection timescale, indicating a dynamic stellar response that would violate 1D stellar evolution modelling assumptions. We distinguish four types of H-He interactions depending on the evolutionary phase and convective stability of the He-rich material. H-burning conditions during H-He interactions give $^{12}mathrm{C}/^{13}mathrm{C}$ ratios between $approx 1.5$ to $sim 1000$ and [C/N] ratios from $approx -2.3 $ to $approx 3$ with a correlation that agrees well with observations of CEMP-no stars. We also explore Ca production from hot CNO breakout and find the simulations presented here likely cannot explain the observed Ca abundance in the most Ca-poor CEMP-no star. We describe the evolution leading to H-He interactions, which occur during or shortly after core-contraction phases. Three simulations without a H-He interaction are computed to Fe-core infall and a $140,mathrm{M}_{odot}$ simulation becomes pair-unstable. We also discuss present modelling limitations and the need for 3D hydrodynamic models to fully understand these stellar evolutionary phases.
We report on our ongoing investigation into the nucleosynthetic and hydrodynamic nature of mixing at the interface between the H- and He-convection zones in massive Pop III stars. Studying a grid of 26 1D stellar evolution simulations with different
Classical Cepheids are powerful probes of both stellar evolution and near-field cosmology thanks to their high luminosities, pulsations, and that they follow the Leavitt (Period-Luminosity) Law. However, there still exist a number of questions regard
White dwarfs are compact objects with atmospheres containing mainly light elements, hydrogen or helium. Because of their surface high gravitational field, heavy elements diffuse downwards in a very short timescale compared to the evolutionary timesca
3D hydrodynamics models of deep stellar convection exhibit turbulent entrainment at the convective-radiative boundary which follows the entrainment law, varying with boundary penetrability. We implement the entrainment law in the 1D Geneva stellar ev
Supermassive primordial stars forming in atomically-cooled halos at $z sim15-20$ are currently thought to be the progenitors of the earliest quasars in the Universe. In this picture, the star evolves under accretion rates of $0.1 - 1$ $M_odot$ yr$^{-