ترغب بنشر مسار تعليمي؟ اضغط هنا

Convective H-He Interactions in Massive Population III Stellar Evolution Models

87   0   0.0 ( 0 )
 نشر من قبل Ondrea Clarkson
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In Pop III stellar models convection-induced mixing between H- and He-rich burning layers can induce a burst of nuclear energy and thereby substantially alter the subsequent evolution and nucleosynthesis in the first massive stars. We investigate H-He shell and core interactions in 26 stellar evolution simulations with masses $15 - 140,mathrm{M}_{odot}$, using five sets of mixing assumptions. In 22 cases H-He interactions induce local nuclear energy release in the range $ sim 10^{9} - 10^{13.5},mathrm{L}_{odot}$. The luminosities on the upper end of this range amount to a substantial fraction of the layers internal energy over a convective advection timescale, indicating a dynamic stellar response that would violate 1D stellar evolution modelling assumptions. We distinguish four types of H-He interactions depending on the evolutionary phase and convective stability of the He-rich material. H-burning conditions during H-He interactions give $^{12}mathrm{C}/^{13}mathrm{C}$ ratios between $approx 1.5$ to $sim 1000$ and [C/N] ratios from $approx -2.3 $ to $approx 3$ with a correlation that agrees well with observations of CEMP-no stars. We also explore Ca production from hot CNO breakout and find the simulations presented here likely cannot explain the observed Ca abundance in the most Ca-poor CEMP-no star. We describe the evolution leading to H-He interactions, which occur during or shortly after core-contraction phases. Three simulations without a H-He interaction are computed to Fe-core infall and a $140,mathrm{M}_{odot}$ simulation becomes pair-unstable. We also discuss present modelling limitations and the need for 3D hydrodynamic models to fully understand these stellar evolutionary phases.



قيم البحث

اقرأ أيضاً

We report on our ongoing investigation into the nucleosynthetic and hydrodynamic nature of mixing at the interface between the H- and He-convection zones in massive Pop III stars. Studying a grid of 26 1D stellar evolution simulations with different mixing assumptions, we find that H-He interactions occur in 23/26 cases. We demonstrate the nucleosynthesis expected in a H-He interaction in an 80M$_odot$. Finally, we describe our progress in simulating a Pop III double convection zone in the PPMStar hydrodynamics code.
Classical Cepheids are powerful probes of both stellar evolution and near-field cosmology thanks to their high luminosities, pulsations, and that they follow the Leavitt (Period-Luminosity) Law. However, there still exist a number of questions regard ing their evolution, such as the role of rotation, convective core overshooting and winds. ln particular, how do these processes impact Cepheid evolution and the predicted fundamental properties such as stellar mass. In this work, we compare a sample of period change that are real-time observations of stellar evolution with new evolution models to test the impact of these first two processes. In our previous study we found that enhanced mass loss is crucial for describing the sample, and here we continue that analysis but for rotational mixing and core overshooting. We show that, while rotation is important for stellar evolution studies, rotation, itself, is insufficient to model the distribution of period change rates from the observed sample. On the other hand, convective core overshooting is needed to explain the magnitude of the rates of period change, but does not explain the number of stars with positive and negative period change rates. In conclusion, we determine that convective core overshooting and stellar rotation alone are not enough to account for the observed distribution of Cepheid rates of period change and another mechanism, such as pulsation-driven mass-loss, may be required.
White dwarfs are compact objects with atmospheres containing mainly light elements, hydrogen or helium. Because of their surface high gravitational field, heavy elements diffuse downwards in a very short timescale compared to the evolutionary timesca le, leaving the lightest ones on the top of the envelope. This results in the main classification of white dwarfs as hydrogen rich or helium rich. But many helium rich white dwarfs show also the presence of hydrogen traces in their atmosphere, whose origin is still unsettled. Here we study, by means of full evolutionary calculations, the case for a representative model of the He-H-Z white dwarfs, a sub-group of helium rich white dwarfs showing both heavy elements and a large amount of hydrogen in their atmosphere. We find it impossible to explain its hydrogen atmospheric content by the convective mixing of a primordial hydrogen present in the star. We conclude that the most likely explanation is the accretion of hydrogen rich material, presumably water-bearing, coming from a debris disk.
3D hydrodynamics models of deep stellar convection exhibit turbulent entrainment at the convective-radiative boundary which follows the entrainment law, varying with boundary penetrability. We implement the entrainment law in the 1D Geneva stellar ev olution code. We then calculate models between 1.5 and 60 M$_{odot}$ at solar metallicity ($Z=0.014$) and compare them to previous generations of models and observations on the main sequence. The boundary penetrability, quantified by the bulk Richardson number, $Ri_{mathrm{B}}$, varies with mass and to a smaller extent with time. The variation of $Ri_{mathrm{B}}$ with mass is due to the mass dependence of typical convective velocities in the core and hence the luminosity of the star. The chemical gradient above the convective core dominates the variation of $Ri_{mathrm{B}}$ with time. An entrainment law method can therefore explain the apparent mass dependence of convective boundary mixing through $Ri_{mathrm{B}}$. New models including entrainment can better reproduce the mass dependence of the main sequence width using entrainment law parameters $A sim 2 times 10^{-4}$ and $n=1$. We compare these empirically constrained values to the results of 3D hydrodynamics simulations and discuss implications.
Supermassive primordial stars forming in atomically-cooled halos at $z sim15-20$ are currently thought to be the progenitors of the earliest quasars in the Universe. In this picture, the star evolves under accretion rates of $0.1 - 1$ $M_odot$ yr$^{- 1}$ until the general relativistic instability triggers its collapse to a black hole at masses of $sim10^5$ $M_odot$. However, the ability of the accretion flow to sustain such high rates depends crucially on the photospheric properties of the accreting star, because its ionising radiation could reduce or even halt accretion. Here we present new models of supermassive Population III protostars accreting at rates $0.001 - 10$ $M_odot$ yr$^{-1}$, computed with the GENEVA stellar evolution code including general relativistic corrections to the internal structure. We use the polytropic stability criterion to estimate the mass at which the collapse occurs, which has been shown to give a lower limit of the actual mass at collapse in recent hydrodynamic simulations. We find that at accretion rates higher than $0.001$ $M_odot$ yr$^{-1}$ the stars evolve as red, cool supergiants with surface temperatures below $10^4$ K towards masses $>10^5$ $M_odot$, and become blue and hot, with surface temperatures above $10^5$ K, only for rates $lesssim0.001$ $M_odot$ yr$^{-1}$. Compared to previous studies, our results extend the range of masses and accretion rates at which the ionising feedback remains weak, reinforcing the case for direct collapse as the origin of the first quasars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا