ﻻ يوجد ملخص باللغة العربية
We report on our ongoing investigation into the nucleosynthetic and hydrodynamic nature of mixing at the interface between the H- and He-convection zones in massive Pop III stars. Studying a grid of 26 1D stellar evolution simulations with different mixing assumptions, we find that H-He interactions occur in 23/26 cases. We demonstrate the nucleosynthesis expected in a H-He interaction in an 80M$_odot$. Finally, we describe our progress in simulating a Pop III double convection zone in the PPMStar hydrodynamics code.
In Pop III stellar models convection-induced mixing between H- and He-rich burning layers can induce a burst of nuclear energy and thereby substantially alter the subsequent evolution and nucleosynthesis in the first massive stars. We investigate H-H
The first massive stars triggered the onset of chemical evolution by releasing the first metals (elements heavier than helium) in the Universe. The nature of these stars and how the early chemical enrichment took place is still largely unknown. Rotat
We discuss moderate resolution spectra, multicolor photometry, and light curves of thirty-one of the most luminous stars and variables in the giant spiral M101. The majority are intermediate A to F-type supergiants. We present new photometry and ligh
Numerical studies of primordial star formation suggest that the first stars in the universe may have been very massive. Stellar models indicate that non-rotating Population III stars with initial masses of 140-260 Msun die as highly energetic pair-in
Extremely metal-poor stars are uniquely informative on the nature of massive Population III stars. Modulo a few elements that vary with stellar evolution, the present-day photospheric abundances observed in extremely metal-poor stars are representati