ﻻ يوجد ملخص باللغة العربية
White dwarfs are compact objects with atmospheres containing mainly light elements, hydrogen or helium. Because of their surface high gravitational field, heavy elements diffuse downwards in a very short timescale compared to the evolutionary timescale, leaving the lightest ones on the top of the envelope. This results in the main classification of white dwarfs as hydrogen rich or helium rich. But many helium rich white dwarfs show also the presence of hydrogen traces in their atmosphere, whose origin is still unsettled. Here we study, by means of full evolutionary calculations, the case for a representative model of the He-H-Z white dwarfs, a sub-group of helium rich white dwarfs showing both heavy elements and a large amount of hydrogen in their atmosphere. We find it impossible to explain its hydrogen atmospheric content by the convective mixing of a primordial hydrogen present in the star. We conclude that the most likely explanation is the accretion of hydrogen rich material, presumably water-bearing, coming from a debris disk.
Novae are some of the most commonly detected optical transients and have the potential to provide valuable information about binary evolution. Binary population synthesis codes have emerged as the most effective tool for modelling populations of bina
In Pop III stellar models convection-induced mixing between H- and He-rich burning layers can induce a burst of nuclear energy and thereby substantially alter the subsequent evolution and nucleosynthesis in the first massive stars. We investigate H-H
We exploit the recent discovery of pulsations in mixed-atmosphere (He/H), extremely low-mass white dwarf precursors (ELM proto-WDs) to test the proposition that rotational mixing is a fundamental process in the formation and evolution of low-mass hel
The carbon-oxygen white dwarf (CO WD) + He star channel is one of the promising ways for producing type Ia supernovae (SNe Ia) with short delay times. Recent studies found that carbon under the He-shell can be ignited if the mass-accretion rate of CO
Accretion induced collapse (AIC) may be responsible for the formation of some interesting neutron star binaries, e.g., millisecond pulsars, intermediate-mass binary pulsars, etc. It has been suggested that oxygen-neon white dwarfs (ONe WDs) can incre