ﻻ يوجد ملخص باللغة العربية
The integral length scale ($mathcal{L}$) is considered to be characteristic of the largest motions of a turbulent flow, and as such, it is an input parameter in modern and classical approaches of turbulence theory and numerical simulations. Its experimental estimation, however, could be difficult in certain conditions, for instance, when the experimental calibration required to measure $mathcal{L}$ is hard to achieve (hot-wire anemometry on large scale wind-tunnels, and field measurements), or in standard facilities using active grids due to the behaviour of their velocity autocorrelation function $rho(r)$, which does not in general cross zero. In this work, we provide two alternative methods to estimate $mathcal{L}$ using the variance of the distance between successive zero crossings of the streamwise velocity fluctuations, thereby reducing the uncertainty of estimating $mathcal{L}$ under similar experimental conditions. These methods are applicable to variety of situations such as active grids flows, field measurements, and large scale wind tunnels.
We present velocity spectra measured in three cryogenic liquid 4He steady flows: grid and wake flows in a pressurized wind tunnel capable of achieving mean velocities up to 5 m/s at temperatures above and below the superfluid transition, down to 1.7
We use direct numerical simulations to calculate the joint probability density function of the relative distance $R$ and relative radial velocity component $V_R$ for a pair of heavy inertial particles suspended in homogeneous and isotropic turbulent
We develop a stochastic model for the velocity gradients dynamics along a Lagrangian trajectory. Comparing with different attempts proposed in the literature, the present model, at the cost of introducing a free parameter known in turbulence phenomen
We present an investigation of the statistics of velocity gradient related quantities, in particluar energy dissipation rate and enstrophy, along the trajectories of fluid tracers and of heavy/light particles advected by a homogeneous and isotropic t
We present a comparison of different particles velocity and acceleration statistics in two paradigmatic turbulent swirling flows: the von Karman flow in a laboratory experiment, and the Taylor-Green flow in direct numerical simulations. Tracers, as w