ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistics of the relative velocity of particles in turbulent flows : monodisperse particles

97   0   0.0 ( 0 )
 نشر من قبل Akshay Bhatnagar
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use direct numerical simulations to calculate the joint probability density function of the relative distance $R$ and relative radial velocity component $V_R$ for a pair of heavy inertial particles suspended in homogeneous and isotropic turbulent flows. At small scales the distribution is scale invariant, with a scaling exponent that is related to the particle-particle correlation dimension in phase space, $D_2$. It was argued [1, 2] that the scale invariant part of the distribution has two asymptotic regimes: (1) $|V_R| ll R$ where the distribution depends solely on $R$; and (2) $|V_R| gg R$ where the distribution is a function of $|V_R|$ alone. The probability distributions in these two regimes are matched along a straight line $|V_R| = z^ast R$. Our simulations confirm that this is indeed correct. We further obtain $D_2$ and $z^ast$ as a function of the Stokes number, ${rm St}$. The former depends non-monotonically on ${rm St}$ with a minimum at about ${rm St} approx 0.7$ and the latter has only a weak dependence on ${rm St}$.



قيم البحث

اقرأ أيضاً

77 - Akshay Bhatnagar 2020
We study the joint probability distributions of separation, $R$, and radial component of the relative velocity, $V_{rm R}$, of particles settling under gravity in a turbulent flow. We also obtain the moments of these distributions and analyze their a nisotropy using spherical harmonics. We find that the qualitative nature of the joint distributions remains the same as no gravity case. Distributions of $V_{rm R}$ for fixed values of $R$ show a power-law dependence on $V_{rm R}$ for a range of $V_{rm R}$, exponent of the power-law depends on the gravity. Effects of gravity are also manifested in the following ways: (a) moments of the distributions are anisotropic; the degree of anisotropy depends on particles Stokes number, but does not depend on $R$ for small values of $R$. (b) mean velocity of collision between two particles is decreased for particles having equal Stokes numbers but increased for particles having different Stokes numbers. For the later, collision velocity is set by the difference in their settling velocities.
127 - N Machicoane , L Fiabane 2015
The long time dynamics of large particles trapped in two inhomogeneous turbulent shear flows is studied experimentally. Both flows present a common feature, a shear region that separates two colliding circulations, but with different spatial symmetri es and temporal behaviors. Because large particles are less and less sensitive to flow fluctuations as their size increases, we observe the emergence of a slow dynamics corresponding to back-and-forth motions between two attractors, and a super-slow regime synchronized with flow reversals when they exist. Such dynamics is substantially reproduced by a one dimensional stochastic model of an over-damped particle trapped in a two-well potential, forced by a colored noise. An extended model is also proposed that reproduces observed dynamics and trapping without potential barrier: the key ingredient is the ratio between the time scales of the noise correlation and the particle dynamics. A total agreement with experiments requires the introduction of spatially inhomogeneous fluctuations and a suited confinement strength.
We present a comparison of different particles velocity and acceleration statistics in two paradigmatic turbulent swirling flows: the von Karman flow in a laboratory experiment, and the Taylor-Green flow in direct numerical simulations. Tracers, as w ell as inertial particles, are considered. Results indicate that, in spite of the differences in boundary conditions and forcing mechanisms, scaling properties and statistical quantities reveal similarities between both flows, pointing to new methods to calibrate and compare models for particles dynamics in numerical simulations, as well as to characterize the dynamics of particles in simulations and experiments.
The dynamics of particles in turbulence when the particle-size is larger than the dissipative scale of the carrier flow is studied. Recent experiments have highlighted signatures of particles finiteness on their statistical properties, namely a decre ase of their acceleration variance, an increase of correlation times -at increasing the particles size- and an independence of the probability density function of the acceleration once normalized to their variance. These effects are not captured by point particle models. By means of a detailed comparison between numerical simulations and experimental data, we show that a more accurate model is obtained once Faxen corrections are included.
We investigate the response of large inertial particle to turbulent fluctuations in a inhomogeneous and anisotropic flow. We conduct a Lagrangian study using particles both heavier and lighter than the surrounding fluid, and whose diameters are compa rable to the flow integral scale. Both velocity and acceleration correlation functions are analyzed to compute the Lagrangian integral time and the acceleration time scale of such particles. The knowledge of how size and density affect these time scales is crucial in understanding partical dynamics and may permit stochastic process modelization using two-time models (for instance Saw-fords). As particles are tracked over long times in the quasi totality of a closed flow, the mean flow influences their behaviour and also biases the velocity time statistics, in particular the velocity correlation functions. By using a method that allows for the computation of turbulent velocity trajectories, we can obtain unbiased Lagrangian integral time. This is particularly useful in accessing the scale separation for such particles and to comparing it to the case of fluid particles in a similar configuration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا