ترغب بنشر مسار تعليمي؟ اضغط هنا

Turbulent velocity spectra in superfluid flows

517   0   0.0 ( 0 )
 نشر من قبل Philippe-E. Roche
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present velocity spectra measured in three cryogenic liquid 4He steady flows: grid and wake flows in a pressurized wind tunnel capable of achieving mean velocities up to 5 m/s at temperatures above and below the superfluid transition, down to 1.7 K, and a chunk turbulence flow at 1.55 K, capable of sustaining mean superfluid velocities up to 1.3 m/s. Depending on the flows, the stagnation pressure probes used for anemometry are resolving from one to two decades of the inertial regime of the turbulent cascade. We do not find any evidence that the second order statistics of turbulence below the superfluid transition differ from the ones of classical turbulence, above the transition.



قيم البحث

اقرأ أيضاً

The 4/5-law of turbulence, which characterizes the energy cascade from large to small-sized eddies at high Reynolds numbers in classical fluids, is verified experimentally in a superfluid 4He wind tunnel, operated down to 1.56 K and up to R_lambda ~ 1640. The result is corroborated by high-resolution simulations of Landau-Tiszas two-fluid model down to 1.15 K, corresponding to a residual normal fluid concentration below 3 % but with a lower Reynolds number of order R_lambda ~ 100. Although the Karman-Howarth equation (including a viscous term) is not valid emph{a priori} in a superfluid, it is found that it provides an empirical description of the deviation from the ideal 4/5-law at small scales and allows us to identify an effective viscosity for the superfluid, whose value matches the kinematic viscosity of the normal fluid regardless of its concentration.
We show and explain how a long bead-spring chain, immersed in a homogeneous, isotropic turbulent flow, preferentially samples vortical flow structures. We begin with an elastic, extensible chain which is stretched out by the flow, up to inertial-rang e scales. This filamentary object, which is known to preferentially sample the circular coherent vortices of two-dimensional (2D) turbulence, is shown here to also preferentially sample the intense, tubular, vortex filaments of 3D turbulence. In the 2D case, the chain collapses into a tracer inside vortices. In 3D, on the contrary, the chain is extended even in vortical regions, which suggests that it follows axially-stretched tubular vortices by aligning with their axes. This physical picture is confirmed by examining the relative sampling behaviour of the individual beads, and by additional studies on an inextensible chain with adjustable bending-stiffness. A highly-flexible, inextensible chain also shows preferential sampling in 3D, provided it is longer than the dissipation scale, but not much longer than the vortex tubes. This is true also for 2D turbulence, where a long inextensible chain can occupy vortices by coiling into them. When the chain is made inflexible, however, coiling is prevented and the extent of preferential sampling in 2D is considerably reduced. In 3D, on the contrary, bending stiffness has no effect, because the chain does not need to coil in order to thread a vortex tube and align with its axis.
We present a comparison of different particles velocity and acceleration statistics in two paradigmatic turbulent swirling flows: the von Karman flow in a laboratory experiment, and the Taylor-Green flow in direct numerical simulations. Tracers, as w ell as inertial particles, are considered. Results indicate that, in spite of the differences in boundary conditions and forcing mechanisms, scaling properties and statistical quantities reveal similarities between both flows, pointing to new methods to calibrate and compare models for particles dynamics in numerical simulations, as well as to characterize the dynamics of particles in simulations and experiments.
Phoresis, the drift of particles induced by scalar gradients in a flow, can result in an effective compressibility, bringing together or repelling particles from each other. Here, we ask whether this effect can affect the transport of particles in a turbulent flow. To this end, we study how the dispersion of a cloud of phoretic particles is modified when injected in the flow, together with a blob of scalar, whose effect is to transiently bring particles together, or push them away from the center of the blob. The resulting phoretic effect can be quantified by a single dimensionless number. Phenomenological considerations lead to simple predictions for the mean separation between particles, which are consistent with results of direct numerical simulations. Using the numerical results presented here, as well as those from previous studies, we discuss quantitatively the experimental consequences of this work and the possible impact of such phoretic mechanisms in natural systems.
We develop a stochastic model for the velocity gradients dynamics along a Lagrangian trajectory. Comparing with different attempts proposed in the literature, the present model, at the cost of introducing a free parameter known in turbulence phenomen ology as the intermittency coefficient, gives a realistic picture of velocity gradient statistics at any Reynolds number. To achieve this level of accuracy, we use as a first modelling step a regularized self-stretching term in the framework of the Recent Fluid Deformation (RFD) approximation that was shown to give a realistic picture of small scales statistics of turbulence only up to moderate Reynolds numbers. As a second step, we constrain the dynamics, in the spirit of Girimaji & Pope (1990), in order to impose a peculiar statistical structure to the dissipation seen by the Lagrangian particle. This probabilistic closure uses as a building block a random field that fulfils the statistical description of the intermittency, i.e. multifractal, phenomenon. To do so, we define and generalize to a statistically stationary framework a proposition made by Schmitt (2003). These considerations lead us to propose a non-linear and non-Markovian closed dynamics for the elements of the velocity gradient tensor. We numerically integrate this dynamics and observe that a stationary regime is indeed reached, in which (i) the gradients variance is proportional to the Reynolds number, (ii) gradients are typically correlated over the (small) Kolmogorov time scale and gradients norms over the (large) integral time scale (iii) the joint probability distribution function of the two non vanishing invariants $Q$ and $R$ reproduces the characteristic teardrop shape, (iv) vorticity gets preferentially aligned with the intermediate eigendirection of the deformation tensor and (v) gradients are strongly non-Gaussian and intermittent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا