ترغب بنشر مسار تعليمي؟ اضغط هنا

The HR 1614 moving group is not a dissolving cluster

66   0   0.0 ( 0 )
 نشر من قبل Iryna Kushniruk
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The HR 1614 overdensity in velocity space and has for a long time been known as an old (~2 Gyr) and metal-rich ([Fe/H]~0.2) nearby moving group that has a dissolving cluster origin. The existence of such old and metal-rich groups in the solar vicinity is quite unexpected since the vast majority of nearby moving groups are known to be young. In the light of new and significantly larger data sets we aim to re-investigate the properties and origin of the HR 1614 moving group. To identify and characterise the HR 1614 moving group we use astrometric data from Gaia DR2; distances, extinction, and reddening corrections from the StarHorse code; elemental abundances from the GALAH and APOGEE spectroscopic surveys; and photometric metallicities from the SkyMapper survey. Bayesian ages were estimated for the SkyMapper stars. Since the Hercules stream is the closest kinematical structure to the HR 1614 moving group in velocity space, we use it for comparison purposes. Stars that are likely to be members of the two groups were selected based on their space velocities. The HR 1614 moving group is located mainly at negative U velocities, does not form an arch of constant energy in the U-V space and is tilted in V. The overdensity is not chemically homogeneous but that its stars exist at a wide range of both metallicities, ages, and elemental abundance ratios. They are essentially similar to what is observed in the Galactic thin and thick disks, a younger population (~3 Gyr) that is metal-rich (-0.2<[Fe/H]<0.4) and alpha-poor. It should therefore not be considered as a dissolving open cluster, or an accreted population. We suggest that HR 1614 has a complex origin that could be explained by combining several different mechanisms such as resonances with the Galactic bar and spiral structure, phase-mixing of dissolving spiral structure, and phase-mixing due to an external perturbation.



قيم البحث

اقرأ أيضاً

The Kapteyn moving group has been postulated as tidal debris from $omega$ Centauri. If true, members of the group should show some of the chemical abundance patterns known for stars in the cluster. We present an optical and near-infrared high-resolut ion, high-S/N spectroscopic study of 14 stars of the Kapteyn group, plus 10 additional stars (the $omega$ Cen-group) that, while not listed as members of the Kapteyn group as originally defined, have been nevertheless associated dynamically with $omega$ Centauri. Abundances for Na, O, Mg, Al, Ca and Ba were derived from the optical spectra, while the strength of the chromospheric He I 10830 {AA} line is studied as a possible helium abundance indicator. The resulting Na-O and Mg-Al patterns for stars of the combined Kapteyn and $omega$ Cen-group samples do not resemble those of $omega$ Centauri, and are not different from those of field stars of the Galactic halo. The distribution of equivalent widths of the He I 10830 {AA} line is consistent with that found among non-active field stars. Therefore, no evidence is found for second-generation stars within our samples, which most likely rules out a globular-cluster origin. Moreover, no hint of the unique Ba-overabundance at the metal-rich end, well-established for $omega$ Centauri stars, is seen among stars of the combined samples. Because this specific Ba pattern is present in $omega$ Centauri irrespective of stellar generation, this would rule out the possibility that our entire sample might be composed of only first generation stars from the cluster. Finally, for the stars of the Kapteyn group, the possibility of an origin in the hypothetical $omega$ Centauris parent galaxy is disfavored by the different run of $alpha$-elements with metallicity between our targets and stars from present-day dwarf galaxies.
98 - E. Sabbi , A. Nota , M. Tosi 2011
We use deep images acquired with the Advanced Camera for Surveys (ACS) on board of the Hubble Space Telescope (HST) in the filters F555W and F814W to characterize the properties of NGC 376, a young star cluster located in the wing of the Small Magell anic Cloud (SMC). Using isochrone fitting we derive for NGC 376 an age of 28+/-7 Myr, in good agreement with previous studies. The high spatial resolution ACS data allow us to determine the center of gravity of the cluster and to construct extended surface brightness and radial density profiles. Neither of these profiles can be fitted with a theoretical model, suggesting that the cluster is not in virial equilibrium. Considering the young age of the cluster, we speculate that the distortion of the radial profiles may be the result of the rapid gas dispersal that follows the initial phase of star formation. The cluster shows clear evidence of dynamical mass segregation. From the properties of the radial profiles and the present day mass function (PDMF) we conclude that NGC 376 appears to have already lost nearly 90% of its initial stellar mass, probably as a consequence of the sudden gas dispersal that follows the early phase of star formation (SF).
241 - Fu-Chi Yeh 2019
We employed recent Gaia/DR2 data to investigate the dynamical status of the nearby (300 pc), old (2.5 Gyr) open cluster Ruprecht~147. We found prominent leading and trailing tails of stars along the cluster orbit, which demonstrates that Ruprecht~147 is losing stars at fast pace. Star counts indicate the cluster has a core radius of 33.3 arcmin, and a tidal radius of 137.5 arcmin. The cluster also possesses an extended corona, which cannot be reproduced by a simple King model. We computed the present-day cluster mass using its luminosity and mass function, and derived an estimate of 234$pm$52 $M_{odot}$. We also estimated the cluster original mass using available recipes extracted from N-body simulations obtaining a mass at birth of 50000$pm$6500 $M_{odot}$. Therefore dynamical mass loss, mostly caused by tidal interaction with the Milky Way, reduced the cluster mass by about 99%. We then conclude that Ruprecht~147 is rapidly dissolving into the general Galactic disc.
The open cluster (OC) NGC 2453 is of particular importance since it has been considered to host the planetary nebula (PN) NGC 2452, however their distances and radial velocities are strongly contested. In order to obtain a complete picture of the fun damental parameters of the OC NGC 2453, 11 potential members were studied. The results allowed us to resolve the PN NGC 2452 membership debate. Radial velocities for the 11 stars in NGC 2453 and the PN were measured and matched with Gaia data release 2 (DR2) to estimate the cluster distance. In addition, we used deep multi-band UBVRI photometry to get fundamental parameters of the cluster via isochrone fitting on the most likely cluster members, reducing inaccuracies due to field stars.The distance of the OC NGC 2453 (4.7 $pm$ 0.2 kpc) was obtained with an independent method solving the discrepancy reported in the literature. This result is in good agreement with an isochrone fitting of 40-50 Myr. On the other hand, the radial velocity of NGC 2453 ($78 pm 3$ km s$^{-1}$) disagrees with the velocity of NGC2452 ($62 pm 2$ km s$^{-1}$). Our results show that the PN is a foreground object in the line of sight. Due to the discrepancies found in the parameters studied, we conclude that the PN NGC 2452 is not a member of the OC NGC 2453.
We present a new moving group clustered in kinematics, spatial position and elemental abundances. Its spatial position is around the center of the Local Arm of the Milky Way. A convergent point method was taken to select candidate member stars.textbf { Among 206 candidate member stars, 74 are pre-main-sequence stars and some of them have stellar disks.} We presume those pre-main sequence stars belong to Orion nebula. We suggest this moving group is caused by density wave of the Local Arm passing by.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا