ترغب بنشر مسار تعليمي؟ اضغط هنا

Is the young star cluster NGC 376 dissolving in the field of the SMC?

98   0   0.0 ( 0 )
 نشر من قبل Elena Sabbi
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use deep images acquired with the Advanced Camera for Surveys (ACS) on board of the Hubble Space Telescope (HST) in the filters F555W and F814W to characterize the properties of NGC 376, a young star cluster located in the wing of the Small Magellanic Cloud (SMC). Using isochrone fitting we derive for NGC 376 an age of 28+/-7 Myr, in good agreement with previous studies. The high spatial resolution ACS data allow us to determine the center of gravity of the cluster and to construct extended surface brightness and radial density profiles. Neither of these profiles can be fitted with a theoretical model, suggesting that the cluster is not in virial equilibrium. Considering the young age of the cluster, we speculate that the distortion of the radial profiles may be the result of the rapid gas dispersal that follows the initial phase of star formation. The cluster shows clear evidence of dynamical mass segregation. From the properties of the radial profiles and the present day mass function (PDMF) we conclude that NGC 376 appears to have already lost nearly 90% of its initial stellar mass, probably as a consequence of the sudden gas dispersal that follows the early phase of star formation (SF).



قيم البحث

اقرأ أيضاً

The HR 1614 overdensity in velocity space and has for a long time been known as an old (~2 Gyr) and metal-rich ([Fe/H]~0.2) nearby moving group that has a dissolving cluster origin. The existence of such old and metal-rich groups in the solar vicinit y is quite unexpected since the vast majority of nearby moving groups are known to be young. In the light of new and significantly larger data sets we aim to re-investigate the properties and origin of the HR 1614 moving group. To identify and characterise the HR 1614 moving group we use astrometric data from Gaia DR2; distances, extinction, and reddening corrections from the StarHorse code; elemental abundances from the GALAH and APOGEE spectroscopic surveys; and photometric metallicities from the SkyMapper survey. Bayesian ages were estimated for the SkyMapper stars. Since the Hercules stream is the closest kinematical structure to the HR 1614 moving group in velocity space, we use it for comparison purposes. Stars that are likely to be members of the two groups were selected based on their space velocities. The HR 1614 moving group is located mainly at negative U velocities, does not form an arch of constant energy in the U-V space and is tilted in V. The overdensity is not chemically homogeneous but that its stars exist at a wide range of both metallicities, ages, and elemental abundance ratios. They are essentially similar to what is observed in the Galactic thin and thick disks, a younger population (~3 Gyr) that is metal-rich (-0.2<[Fe/H]<0.4) and alpha-poor. It should therefore not be considered as a dissolving open cluster, or an accreted population. We suggest that HR 1614 has a complex origin that could be explained by combining several different mechanisms such as resonances with the Galactic bar and spiral structure, phase-mixing of dissolving spiral structure, and phase-mixing due to an external perturbation.
184 - Stefano Rubele 2009
The rich SMC star cluster NGC419 has recently been found to present both a broad main sequence turn-off and a dual red clump of giants, in the sharp colour-magnitude diagrams (CMD) derived from the High Resolution Channel of the Advanced Camera for S urveys on board the Hubble Space Telescope. In this work, we apply to the NGC419 data the classical method of star formation history (SFH) recovery via CMD reconstruction, deriving for the first time this function for a star cluster with multiple turn-offs. The values for the cluster metallicity, reddening, distance and binary fraction, were varied within the limits allowed by present observations. The global best-fitting solution is an excellent fit to the data, reproducing all the CMD features with striking accuracy. The corresponding star formation rate is provided together with estimates of its random and systematic errors. Star formation is found to last for at least 700 Myr, and to have a marked peak at the middle of this interval, for an age of 1.5 Gyr. Our findings argue in favour of multiple star formation episodes (or continued star formation) being at the origin of the multiple main sequence turn-offs in Magellanic Cloud clusters with ages around 1 Gyr. It remains to be tested whether alternative hypotheses, such as a main sequence spread caused by rotation, could produce similarly good fits to the data.
Context: Cepheids are excellent tracers of young stellar populations. They play a crucial role in astrophysics as standard candles. The chemistry of classical Cepheids in the Milky Way is now quite well-known. Despite a much larger sample, the chemic al composition of Magellanic Cepheids has been only scarcely investigated. Aims: For the first time, we study the chemical composition of several Cepheids located in the same populous cluster: NGC 1866, in the Large Magellanic Cloud (LMC). To also investigate the chemical composition of Cepheids at lower metallicity, four targets are located in the Small Magellanic Cloud (SMC). Our sample allows us to increase the number of Cepheids with known metallicities in the LMC/SMC by 20%/25% and the number of Cepheids with detailed chemical composition in the LMC/SMC by 46%/50%. Methods: We use canonical spectroscopic analysis to determine the chemical composition of Cepheids and provide abundances for a good number of $alpha$, iron-peak and neutron-capture elements. Results: We find that six Cepheids in the LMC cluster NGC 1866 have a very homogeneous chemical composition, also consistent with red giant branch (RGB) stars in the cluster. Period--age relations that include no or average rotation indicate that all the Cepheids in NGC 1866 have a similar age and therefore belong to the same stellar population. Our results are in good agreement with theoretical models accounting for luminosity and radial velocity variations. Using distances based on period-luminosity relations in the near- or mid-infrared, we investigate for the first time the metallicity distribution of the young population in the SMC in the depth direction. Preliminary results show no metallicity gradient along the SMC main body, but our sample is small and does not contain Cepheids in the inner few degrees of the SMC.
Observations of massive stars in young open clusters (< ~8 Myr) have shown that a majority of them are in binary systems, most of which will interact during their life. Populations of massive stars older than ~20 Myr allow us to probe the outcome of such interactions after many systems have experienced mass and angular momentum transfer. Using multi-epoch integral-field spectroscopy, we investigate the multiplicity properties of the massive-star population in NGC 330 (~40 Myr) in the Small Magellanic Cloud to search for imprints of stellar evolution on the multiplicity properties. From six epochs of VLT/MUSE observations supported by adaptive optics we extract spectra and measure radial velocities for stars brighter than F814W = 19. We identify single-lined spectroscopic binaries through significant RV variability as well as double-lined spectroscopic binaries, and quantify the observational biases for binary detection. The observed spectroscopic binary fraction is 13.2+/-2.0 %. Considering period and mass ratio ranges from log(P)=0.15-3.5, and q = 0.1-1.0, and a representative set of orbital parameter distributions, we find a bias-corrected close binary fraction of 34 +8 -7 %. This seems to decline for the fainter stars, which indicates either that the close binary fraction drops in the B-type domain, or that the period distribution becomes more heavily weighted towards longer orbital periods. Both fractions vary strongly in different regions of the color-magnitude diagram which probably reveals the imprint of the binary history of different groups of stars. We provide the first homogeneous RV study of a large sample of B-type stars at a low metallicity. The overall bias-corrected close binary fraction of B stars in NGC 330 is lower than the one reported for younger Galactic and LMC clusters. More data are needed to establish whether this result from an age or a metallicty effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا