ﻻ يوجد ملخص باللغة العربية
We employed recent Gaia/DR2 data to investigate the dynamical status of the nearby (300 pc), old (2.5 Gyr) open cluster Ruprecht~147. We found prominent leading and trailing tails of stars along the cluster orbit, which demonstrates that Ruprecht~147 is losing stars at fast pace. Star counts indicate the cluster has a core radius of 33.3 arcmin, and a tidal radius of 137.5 arcmin. The cluster also possesses an extended corona, which cannot be reproduced by a simple King model. We computed the present-day cluster mass using its luminosity and mass function, and derived an estimate of 234$pm$52 $M_{odot}$. We also estimated the cluster original mass using available recipes extracted from N-body simulations obtaining a mass at birth of 50000$pm$6500 $M_{odot}$. Therefore dynamical mass loss, mostly caused by tidal interaction with the Milky Way, reduced the cluster mass by about 99%. We then conclude that Ruprecht~147 is rapidly dissolving into the general Galactic disc.
We report our spectroscopic monitoring of the detached, grazing, and slightly eccentric 12-day double-lined eclipsing binary EPIC 219568666 in the old nearby open cluster Ruprecht 147. This is the second eclipsing system to be analyzed in this cluste
Eclipsing binaries in star clusters offer more stringent tests of stellar evolution theory than field binaries because models must not only match the binary properties, but also the radiative properties of all other cluster members at a single chemic
We report the discovery of EPIC 219388192 b, a transiting brown dwarf in a 5.3-day orbit around a member star of Ruprecht-147, the oldest nearby open cluster association, which was photometrically monitored by K2 during its Campaign 7. We combine the
We report follow-up spectroscopic observations of the 1.62 day, K-type, detached, active, near-circular, double-lined eclipsing binary EPIC 219511354 in the open cluster Ruprecht 147, identified previously on the basis of photometric observations fro
We use deep images acquired with the Advanced Camera for Surveys (ACS) on board of the Hubble Space Telescope (HST) in the filters F555W and F814W to characterize the properties of NGC 376, a young star cluster located in the wing of the Small Magell