ﻻ يوجد ملخص باللغة العربية
Expressing the evolution equations for the filtered velocity gradient tensor (FVGT) in the strain-rate eigenframe provides an insightful way to disentangle and understand various processes such as strain self-amplification, vortex stretching and tilting, and to consider their properties at different scales in the flow. Using data from Direct Numerical Simulation (DNS) of the forced Navier-Stokes equation, we consider the relative importance of local and non-local terms in the FVGT eigenframe equations across the scales using statistical analysis. The analysis of the eigenframe rotation-rate, that drives vorticity tilting, shows that the anisotropic pressure Hessian plays a key role, with the sub-grid stress making an important contribution outside the dissipation range, and the local spinning due to vorticity making a much smaller contribution. The results also show the striking behavior that the vorticity tilting term remains highly intermittent even at relatively large scales. We derive a generalization of the Lumley triangle that allows us to show that the pressure Hessian has a preference for two-component axisymmetric configurations at small scales, with a transition to a more isotropic state at larger scales. Correlations between the sub-grid stress and other terms in the eigenframe equations are considered, highlighting the coupling between the sub-grid and nonlinear amplification terms, with the sub-grid term playing an important role in regularizing the system. These results provide useful guidelines for improving Lagrangian models of the FVGT, since current models fail to capture a number of subtle features observed in our results.
We present a new approach for constructing data-driven subgrid stress models for large eddy simulation of turbulent flows. The key to our approach is representation of model input and output tensors in the filtered strain rate eigenframe. Provided in
We develop a stochastic model for the velocity gradients dynamics along a Lagrangian trajectory. Comparing with different attempts proposed in the literature, the present model, at the cost of introducing a free parameter known in turbulence phenomen
We present an investigation of the statistics of velocity gradient related quantities, in particluar energy dissipation rate and enstrophy, along the trajectories of fluid tracers and of heavy/light particles advected by a homogeneous and isotropic t
The integral length scale ($mathcal{L}$) is considered to be characteristic of the largest motions of a turbulent flow, and as such, it is an input parameter in modern and classical approaches of turbulence theory and numerical simulations. Its exper
We use direct numerical simulations to calculate the joint probability density function of the relative distance $R$ and relative radial velocity component $V_R$ for a pair of heavy inertial particles suspended in homogeneous and isotropic turbulent