ﻻ يوجد ملخص باللغة العربية
We have studied nucleation of magnetic domains and propagation of magnetic domain walls (DWs) induced by pulsed magnetic field in a ferromagnetic film with in-plane uniaxial anisotropy. Different from what have been seen up to now in out-of-plane anisotropy films, the nucleated domains have a rectangular shape in which a pair of the opposite sides are perfectly linear DWs, while the other pair present zigzags. This can be explained by magnetostatic optimization, knowing that the pulse field is applied parallel to the easy magnetization axis. The field induced propagation of these two DW types are very different. The linear ones follow a creep law identical to what is usually observed in out-of-plane films, when the velocity of zigzag DWs depends linearly on the applied field amplitude down to very low field. This most unusual feature can be explained by the shape of the DW, which makes it possible to go round the pinning defects. Thanks to that, it seems that propagation of zigzag walls agrees with the 1D model, and these results provide a first experimental evidence of the 1D model relevance in two dimensional ferromagnetic thin films. Lets note that it is the effective DW width parallel to DW propagation direction that matters in the 1D model formula, which is a relevant change when dealing with zigzag DWs.
Chiral magnetic materials provide a number of challenging issues such as the highly efficient domain wall (DW) and skyrmion motions driven by electric current, as of the operation principles of emerging spintronic devices. The DWs in the chiral mater
The interfacial Dzyaloshinskii-Moriya interaction (DMI) is of great interest as it can stabilize chiral spin structures in thin films. Experiments verifying the orientation of the interfacial DMI vector remain rare, in part due to the difficulty of s
Using Lorentz transmission electron microscopy we investigate the behavior of domain walls pinned at non-topographic defects in Cr(3 nm)/Permalloy(10 nm)/Cr(5 nm) nanowires of width 500 nm. The pinning sites consist of linear defects where magnetic p
In chiral magnetic materials, numerous intriguing phenomena such as built in chiral magnetic domain walls (DWs) and skyrmions are generated by the Dzyaloshinskii Moriya interaction (DMI). The DMI also results in asymmetric DW speed under in plane mag
Magnetic domain walls in thin films can be well analyzed using polarized neutron reflectometry. Well defined streaks in the off-specular spin-flip scattering maps are explained by neutron refraction at perpendicular N{e}el walls. The position of the