ﻻ يوجد ملخص باللغة العربية
In chiral magnetic materials, numerous intriguing phenomena such as built in chiral magnetic domain walls (DWs) and skyrmions are generated by the Dzyaloshinskii Moriya interaction (DMI). The DMI also results in asymmetric DW speed under in plane magnetic field, which provides a useful scheme to measure the DMI strengths. However, recent findings of additional asymmetries such as chiral damping have disenabled unambiguous DMI determination and the underlying mechanism of overall asymmetries becomes under debate. By extracting the DMI-induced symmetric contribution, here we experimentally investigated the nature of the additional asymmetry. The results revealed that the additional asymmetry has a truly antisymmetric nature with the typical behavior governed by the DW chirality. In addition, the antisymmetric contribution changes the DW speed more than 100 times, which cannot be solely explained by the chiral damping scenario. By calibrating such antisymmetric contributions, experimental inaccuracies can be largely removed, enabling again the DMI measurement scheme.
Chiral magnetic materials provide a number of challenging issues such as the highly efficient domain wall (DW) and skyrmion motions driven by electric current, as of the operation principles of emerging spintronic devices. The DWs in the chiral mater
Using magnetic force microscopy and micromagnetic simulations, we studied the effect of Oersted magnetic fields on the chirality of transverse magnetic domain walls in Fe$_{20}$Ni$_{80}$/Ir bilayer nanostrips. Applying nanosecond current pulses with
The domain structure in in-plane magnetized Fe/Ni/W(110) films is investigated using spin-polarized low-energy electron microscopy. A novel transition of the domain wall shape from a zigzag-like pattern to straight is observed as a function of the fi
Domain-wall magnetoresistance and low-frequency noise have been studied in epitaxial antiferromagnetically-coupled [Fe/Cr(001)]_10 multilayers and ferromagnetic Co line structures as a function of DC current intensity. In [Fe/Cr(001)]_10 multilayers
Due to the difficulty in detecting and manipulating magnetic states of antiferromagnetic materials, studying their switching dynamics using electrical methods remains a challenging task. In this work, by employing heavy metal/rare earth-transition me