ترغب بنشر مسار تعليمي؟ اضغط هنا

Chirality-induced Antisymmetry in Magnetic Domain-Wall Speed

127   0   0.0 ( 0 )
 نشر من قبل Duck-Ho Kim
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In chiral magnetic materials, numerous intriguing phenomena such as built in chiral magnetic domain walls (DWs) and skyrmions are generated by the Dzyaloshinskii Moriya interaction (DMI). The DMI also results in asymmetric DW speed under in plane magnetic field, which provides a useful scheme to measure the DMI strengths. However, recent findings of additional asymmetries such as chiral damping have disenabled unambiguous DMI determination and the underlying mechanism of overall asymmetries becomes under debate. By extracting the DMI-induced symmetric contribution, here we experimentally investigated the nature of the additional asymmetry. The results revealed that the additional asymmetry has a truly antisymmetric nature with the typical behavior governed by the DW chirality. In addition, the antisymmetric contribution changes the DW speed more than 100 times, which cannot be solely explained by the chiral damping scenario. By calibrating such antisymmetric contributions, experimental inaccuracies can be largely removed, enabling again the DMI measurement scheme.



قيم البحث

اقرأ أيضاً

Chiral magnetic materials provide a number of challenging issues such as the highly efficient domain wall (DW) and skyrmion motions driven by electric current, as of the operation principles of emerging spintronic devices. The DWs in the chiral mater ials exhibit asymmetric DW speed variation under application of in plane magnetic field. Here, we show that such DW speed asymmetry causes the DW tilting during the motion along wire structure. It has been known that the DW tilting can be induced by the direct Zeeman interaction of the DW magnetization under application of in plane magnetic field. However, our experimental observations manifests that there exists another dominant process with the DW speed asymmetry caused by either the Dzyaloshinskii Moriya interaction (DMI) or the chirality dependent DW speed variation. A theoretical model based on the DW geometry reveals that the DW tilting is initiated by the DW pinning at wire edges and then, the direction of the DW tilting is determined by the DW speed asymmetry, as confirmed by a numerical simulation. The present observation reveals the decisive role of the DW pinning with the DW speed asymmetry, which determines the DW geometry and consequently, the dynamics.
314 - Zahid Ishaque 2013
Using magnetic force microscopy and micromagnetic simulations, we studied the effect of Oersted magnetic fields on the chirality of transverse magnetic domain walls in Fe$_{20}$Ni$_{80}$/Ir bilayer nanostrips. Applying nanosecond current pulses with a current density of around $2times10^{12}$ A/m$^2$, the chirality of a transverse domain wall could be switched reversibly and reproducibly. These current densities are similar to the ones used for current-induced domain wall motion, indicating that the Oersted field may stabilize the transverse wall chirality during current pulses and prevent domain wall transformations.
The domain structure in in-plane magnetized Fe/Ni/W(110) films is investigated using spin-polarized low-energy electron microscopy. A novel transition of the domain wall shape from a zigzag-like pattern to straight is observed as a function of the fi lm thickness, which is triggered by the transition of the domain wall type from out-of-plane chiral wall to in-plane Neel wall. The contribution of the Dzyaloshinskii-Moriya interaction to the wall energy is proposed to explain the transition of the domain wall shape, which is supported by Monte-Carlo simulations.
Domain-wall magnetoresistance and low-frequency noise have been studied in epitaxial antiferromagnetically-coupled [Fe/Cr(001)]_10 multilayers and ferromagnetic Co line structures as a function of DC current intensity. In [Fe/Cr(001)]_10 multilayers a transition from excess to suppressed domain-wall induced 1/f noise above current densities of j_c ~ 2*10^5 A/cm^2 has been observed. In ferromagnetic Co line structures the domain wall related noise remains qualitatively unchanged up to current densities exceeding 10^6A/cm^2. Theoretical estimates of the critical current density for a synthetic Fe/Cr antiferromagnet suggest that this effect may be attributed to current-induced domain-wall motion that occurs via spin transfer torques.
Due to the difficulty in detecting and manipulating magnetic states of antiferromagnetic materials, studying their switching dynamics using electrical methods remains a challenging task. In this work, by employing heavy metal/rare earth-transition me tal alloy bilayers, we experimentally studied current-induced domain wall dynamics in an antiferromagnetically coupled system. We show that the current-induced domain wall mobility reaches a maximum close to the angular momentum compensation. With experiment and modelling, we further reveal the internal structures of domain walls and the underlying mechanisms for their fast motion. We show that the chirality of the ferrimagnetic domain walls remains the same across the compensation points, suggesting that spin orientations of specific sublattices rather than net magnetization determine Dzyaloshinskii-Moriya interaction in heavy metal/ferrimagnet bilayers. The high current-induced domain wall mobility and the robust domain wall chirality in compensated ferrimagnetic material opens new opportunities for high-speed spintronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا