ترغب بنشر مسار تعليمي؟ اضغط هنا

An Improved Method for the Fitting and Prediction of the Number of COVID-19 Confirmed Cases Based on LSTM

158   0   0.0 ( 0 )
 نشر من قبل Boyi Liu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

New coronavirus disease (COVID-19) has constituted a global pandemic and has spread to most countries and regions in the world. By understanding the development trend of a regional epidemic, the epidemic can be controlled using the development policy. The common traditional mathematical differential equations and population prediction models have limitations for time series population prediction, and even have large estimation errors. To address this issue, we propose an improved method for predicting confirmed cases based on LSTM (Long-Short Term Memory) neural network. This work compared the deviation between the experimental results of the improved LSTM prediction model and the digital prediction models (such as Logistic and Hill equations) with the real data as reference. And this work uses the goodness of fitting to evaluate the fitting effect of the improvement. Experiments show that the proposed approach has a smaller prediction deviation and a better fitting effect. Compared with the previous forecasting methods, the contributions of our proposed improvement methods are mainly in the following aspects: 1) we have fully considered the spatiotemporal characteristics of the data, rather than single standardized data; 2) the improved parameter settings and evaluation indicators are more accurate for fitting and forecasting. 3) we consider the impact of the epidemic stage and conduct reasonable data processing for different stage.



قيم البحث

اقرأ أيضاً

Having accurate and timely data on confirmed active COVID-19 cases is challenging, since it depends on testing capacity and the availability of an appropriate infrastructure to perform tests and aggregate their results. In this paper, we propose meth ods to estimate the number of active cases of COVID-19 from the official data (of confirmed cases and fatalities) and from survey data. We show that the latter is a viable option in countries with reduced testing capacity or suboptimal infrastructures.
193 - Xinyu Wang , Lu Yang , Hong Zhang 2020
The unprecedented coronavirus disease 2019 (COVID-19) pandemic is still a worldwide threat to human life since its invasion into the daily lives of the public in the first several months of 2020. Predicting the size of confirmed cases is important fo r countries and communities to make proper prevention and control policies so as to effectively curb the spread of COVID-19. Different from the 2003 SARS epidemic and the worldwide 2009 H1N1 influenza pandemic, COVID-19 has unique epidemiological characteristics in its infectious and recovered compartments. This drives us to formulate a new infectious dynamic model for forecasting the COVID-19 pandemic within the human mobility network, named the SaucIR-model in the sense that the new compartmental model extends the benchmark SIR model by dividing the flow of people in the infected state into asymptomatic, pathologically infected but unconfirmed, and confirmed. Furthermore, we employ dynamic modeling of population flow in the model in order that spatial effects can be incorporated effectively. We forecast the spread of accumulated confirmed cases in some provinces of mainland China and other countries that experienced severe infection during the time period from late February to early May 2020. The novelty of incorporating the geographic spread of the pandemic leads to a surprisingly good agreement with published confirmed case reports. The numerical analysis validates the high degree of predictability of our proposed SaucIR model compared to existing resemblance. The proposed forecasting SaucIR model is implemented in Python. A web-based application is also developed by Dash (under construction).
The novel Coronavirus (COVID-19) incidence in India is currently experiencing exponential rise but with apparent spatial variation in growth rate and doubling time rate. We classify the states into five clusters with low to the high-risk category and study how the different states moved from one cluster to the other since the onset of the first case on $30^{th}$ January 2020 till the end of unlock 1 that is $30^{th}$ June 2020. We have implemented a new clustering technique called the incrementalKMN (Prasad, R. K., Sarmah, R., Chakraborty, S.(2019))
What is the impact of COVID-19 on South Africa? This paper envisages assisting researchers and decision-makers in battling the COVID-19 pandemic focusing on South Africa. This paper focuses on the spread of the disease by applying heatmap retrieval o f hotspot areas and spatial analysis is carried out using the Moran index. For capturing spatial autocorrelation between the provinces of South Africa, the adjacent, as well as the geographical distance measures, are used as a weight matrix for both absolute and relative counts. Furthermore, generalized logistic growth curve modeling is used for the prediction of the COVID-19 spread. We expect this data-driven modeling to provide some insights into hotspot identification and timeous action controlling the spread of the virus.
173 - Fizza Farooq 2020
A novel coronavirus originated from Wuhan, China in late December 2019 has now affected almost all countries worldwide. Pakistan reported its first case in late February. The country went to lockdown after three weeks since the first case, when the t otal number of cases were over 880. Pakistan imposed a lockdown for more than a month which slowed the spread of COVID 19 effectively, however in late April relaxation in lockdown was allowed by the government in stages to lift the strain on the economy. In this study, the data has been analyzed from daily situation reports by the National Institute of Health Pakistan and the effects of initial strict lockdown and later smart lockdown have been studied. Our analysis showed a 13.14 Percentage increase in cases before lockdown which drops down to 6.55 percent during the lockdown. It proved the effectiveness of lockdown. However, the Percentage Increase in case grows up to 7.24 during a smart lockdown. If it continues to rise in this manner, Pakistan may need to enter again into a strict second lockdown.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا