ترغب بنشر مسار تعليمي؟ اضغط هنا

Changing Clusters of Indian States with respect to number of Cases of COVID-19 using incrementalKMN Method

46   0   0.0 ( 0 )
 نشر من قبل Rabinder Kumar Prasad Mr
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The novel Coronavirus (COVID-19) incidence in India is currently experiencing exponential rise but with apparent spatial variation in growth rate and doubling time rate. We classify the states into five clusters with low to the high-risk category and study how the different states moved from one cluster to the other since the onset of the first case on $30^{th}$ January 2020 till the end of unlock 1 that is $30^{th}$ June 2020. We have implemented a new clustering technique called the incrementalKMN (Prasad, R. K., Sarmah, R., Chakraborty, S.(2019))



قيم البحث

اقرأ أيضاً

Analysing and understanding the transmission and evolution of the COVID-19 pandemic is mandatory to be able to design the best social and medical policies, foresee their outcomes and deal with all the subsequent socio-economic effects. We address thi s important problem from a computational and machine learning perspective. More specifically, we want to statistically estimate all the relevant parameters for the new coronavirus COVID-19, such as the reproduction number, fatality rate or length of infectiousness period, based on Romanian patients, as well as be able to predict future outcomes. This endeavor is important, since it is well known that these factors vary across the globe, and might be dependent on many causes, including social, medical, age and genetic factors. We use a recently published improved version of SEIR, which is the classic, established model for infectious diseases. We want to infer all the parameters of the model, which govern the evolution of the pandemic in Romania, based on the only reliable, true measurement, which is the number of deaths. Once the model parameters are estimated, we are able to predict all the other relevant measures, such as the number of exposed and infectious people. To this end, we propose a self-supervised approach to train a deep convolutional network to guess the correct set of Modified-SEIR model parameters, given the observed number of daily fatalities. Then, we refine the solution with a stochastic coordinate descent approach. We compare our deep learning optimization scheme with the classic grid search approach and show great improvement in both computational time and prediction accuracy. We find an optimistic result in the case fatality rate for Romania which may be around 0.3% and we also demonstrate that our model is able to correctly predict the number of daily fatalities for up to three weeks in the future.
One of the key indicators used in tracking the evolution of an infectious disease isthe reproduction number. This quantity is usually computed using the reportednumber of cases, but ignoring that many more individuals may be infected (e.g.asymptomati cs). We propose a statistical procedure to quantify the impact of un-detected infectious cases on the determination of the effective reproduction number. Our approach is stochastic, data-driven and not relying on any compartmentalmodel. It is applied to the COVID-19 case in eight different countries and all Italianregions, showing that the effect of undetected cases leads to estimates of the effective reproduction numbers larger than those obtained only with the reported cases by factors ranging from two to ten. Our findings urge caution about deciding when and how to relax containment measures based on the value of the reproduction number.
We propose a novel testing and containment strategy in order to contain the spread of SARS-CoV2 while permitting large parts of the population to resume social and economic activity. Our approach recognises the fact that testing capacities are severe ly constrained in many countries. In this setting, we show that finding the best way to utilise this limited number of tests during a pandemic can be formulated concisely as an allocation problem. Our problem formulation takes into account the heterogeneity of the population and uses pooled testing to identify and isolate individuals while prioritising key workers and individuals with a higher risk of spreading the disease. In order to demonstrate the efficacy of our testing and containment mechanism, we perform simulations using a network-based SIR model. Our simulations indicate that applying our mechanism on a population of $100,000$ individuals with only $16$ tests per day reduces the peak number of infected individuals by approximately $20%$, when compared to the scenario where no intervention is implemented.
The CoVid-19 is spreading pandemically all over the world. A rapid defeat of the pandemic requires carrying out on the population a mass screening, able to separate positive from negative cases. Such a cleaning will free a flow of productive populati on. The current rate and cost of testing, performed with the common PCR (polymerase chain reaction) method and with the available resources, is forcing a selection of the subjects to be tested. Indeed, each one must be examined individually at the cost of precious time. Moreover, the exclusion of potentially positive individuals from screening induces health risks, a broad slowdown in the effort to curb the viral spread, and the consequent mortality rates. We present a new procedure, the Purified by Unified Resampling of Infected Multitudes, in short Purim, able to untangle any massive candidate sample with inexpensive screening, through the cross-correlated analysis of the joint speciments. This procedure can reveal and detect most negative patients and in most cases discover the identity of the few positives already in the first or few secondary tests. We investigate the the two-dimensional correlation case in function of the infection probability. The multi-dimensional topology, the scaled Purim procedure are also considered. Extensive Purim tests may measure and weight the degree of epidemic: their outcome may identify focal regions in the early stages. Assuming hundreds or thousand subjects, the saving both in time and in cost will be remarkable. Purim may be able to filter scheduled flights, scholar acceptance, popular international event participants. The optimal extension of Purim outcome is growing as the inverse of the epidemia expansion. Therefore, the earlier, the better.
OBJECTIVES: to describe the first wave of the COVID-19 pandemic with a focus on undetected cases and to evaluate different post-lockdown scenarios. DESIGN: the study introduces a SEIR compartmental model, taking into account the region-specific fract ion of undetected cases, the effects of mobility restrictions, and the personal protective measures adopted, such as wearing a mask and washing hands frequently. SETTING AND PARTICIPANTS: the model is experimentally validated with data of all the Italian regions, some European countries, and the US. MAIN OUTCOME MEASURES: the accuracy of the model results is measured through the mean absolute percentage error (MAPE) and Lewis criteria; fitting parameters are in good agreement with previous literature. RESULTS: the epidemic curves for different countries and the amount of undetected and asymptomatic cases are estimated, which are likely to represent the main source of infections in the near future. The model is applied to the Hubei case study, which is the first place to relax mobility restrictions. Results show different possible scenarios. Mobility and the adoption of personal protective measures greatly influence the dynamics of the infection, determining either a huge and rapid secondary epidemic peak or a more delayed and manageable one. CONCLUSIONS: mathematical models can provide useful insights for healthcare decision makers to determine the best strategy in case of future outbreaks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا