ﻻ يوجد ملخص باللغة العربية
We use discrete-event simulation on a digital computer to study two different models of experimentally realizable quantum walks. The simulation models comply with Einstein locality, are as realistic as the one of the simple random walk in that the particles follow well-defined trajectories, are void of concepts such as particle-wave duality and wave-function collapse, and reproduce the quantum-theoretical results by means of a cause-and-effect, event-by-event process. Our simulation model for the quantum walk experiment presented in [C. Robens et al., Phys. Rev. X 5, 011003 (2015)] reproduces the result of that experiment. Therefore, the claim that the result of the experiment rigorously excludes (i.e., falsifies) any explanation of quantum transport based on classical, well-defined trajectories needs to be revised.
It is shown that discrete-event simulation accurately reproduces the experimental data of a single-neutron interferometry experiment [T. Denkmayr {sl et al.}, Nat. Commun. 5, 4492 (2014)] and provides a logically consistent, paradox-free, cause-and-e
We use discrete-event simulation to construct a subquantum model that can reproduce the quantum-theoretical prediction for the statistics of data produced by the Einstein-Podolsky-Rosen-Bohm experiment and an extension thereof. This model satisfies E
Two models are first presented, of one-dimensional discrete-time quantum walk (DTQW) with temporal noise on the internal degree of freedom (i.e., the coin): (i) a model with both a coin-flip and a phase-flip channel, and (ii) a model with random coin
The evaluation of the performance of adiabatic annealers is hindered by lack of efficient algorithms for simulating their behaviour. We exploit the analyticity of the standard model for the adiabatic quantum process to develop an efficient recursive
We make and generalize the observation that summing of probability amplitudes of a discrete-time quantum walk over partitions of the walking graph consistent with the step operator results in a unitary evolution on the reduced graph which is also a q