ﻻ يوجد ملخص باللغة العربية
Two models are first presented, of one-dimensional discrete-time quantum walk (DTQW) with temporal noise on the internal degree of freedom (i.e., the coin): (i) a model with both a coin-flip and a phase-flip channel, and (ii) a model with random coin unitaries. It is then shown that both these models admit a common limit in the spacetime continuum, namely, a Lindblad equation with Dirac-fermion Hamiltonian part and, as Lindblad jumps, a chirality flip and a chirality-dependent phase flip, which are two of the three standard error channels for a two-level quantum system. This, as one may call it, Dirac Lindblad equation, provides a model of quantum relativistic spatial diffusion, which is evidenced both analytically and numerically. This model of spatial diffusion has the intriguing specificity of making sense only with original unitary models which are relativistic in the sense that they have chirality, on which the noise is introduced: The diffusion arises via the by-construction (quantum) coupling of chirality to the position. For a particle with vanishing mass, the model of quantum relativistic diffusion introduced in the present work, reduces to the well-known telegraph equation, which yields propagation at short times, diffusion at long times, and exhibits no quantumness. Finally, the results are extended to temporal noises which depend smoothly on position.
We use discrete-event simulation on a digital computer to study two different models of experimentally realizable quantum walks. The simulation models comply with Einstein locality, are as realistic as the one of the simple random walk in that the pa
Transport phenomena play a crucial role in modern physics and applied sciences. Examples include the dissipation of energy across a large system, the distribution of quantum information in optical networks, and the timely modeling of spreading diseas
This volume contains a selection of papers presented at the 9th in a series of international conferences on Quantum Simulation and Quantum Walks (QSQW). During this event, we worked on the development of theories based upon quantum walks and quantum
We compare discrete-time quantum walks on graphs to their natural classical equivalents, which we argue are lifted Markov chains, that is, classical Markov chains with added memory. We show that these can simulate quantum walks, allowing us to answer
Quantum key distribution is one of the most fundamental cryptographic protocols. Quantum walks are important primitives for computing. In this paper we take advantage of the properties of quantum walks to design new secure quantum key distribution sc