ﻻ يوجد ملخص باللغة العربية
The evaluation of the performance of adiabatic annealers is hindered by lack of efficient algorithms for simulating their behaviour. We exploit the analyticity of the standard model for the adiabatic quantum process to develop an efficient recursive method for its numerical simulation in case of both unitary and non-unitary evolution. Numerical simulations show distinctly different distributions for the most important figure of merit of adiabatic quantum computing --- the success probability --- in these two cases.
We use discrete-event simulation on a digital computer to study two different models of experimentally realizable quantum walks. The simulation models comply with Einstein locality, are as realistic as the one of the simple random walk in that the pa
The real-time flux dynamics of up to three superconducting quantum interference devices (SQUIDs) are studied by numerically solving the time-dependent Schrodinger equation. The numerical results are used to scrutinize the mapping of the flux degrees
It is shown that discrete-event simulation accurately reproduces the experimental data of a single-neutron interferometry experiment [T. Denkmayr {sl et al.}, Nat. Commun. 5, 4492 (2014)] and provides a logically consistent, paradox-free, cause-and-e
Geometrically frustrated spin-chain compounds such as Ca3Co2O6 exhibit extremely slow relaxation under a changing magnetic field. Consequently, both low-temperature laboratory experiments and Monte Carlo simulations have shown peculiar out-of-equilib
New annealing schedules for quantum annealing are proposed based on the adiabatic theorem. These schedules exhibit faster decrease of the excitation probability than a linear schedule. To derive this conclusion, the asymptotic form of the excitation