ﻻ يوجد ملخص باللغة العربية
We apply the paracontrolled calculus to study the asymptotic behavior of a certain quasilinear PDE with smeared mild noise, which originally appears as the space-time scaling limit of a particle system in random environment on one dimensional discrete lattice. We establish the convergence result and show a local in time well-posedness of the limit stochastic PDE with spatial white noise. It turns out that our limit stochastic PDE does not require any renormalization. We also show a comparison theorem for the limit equation.
We start in this work the study of the relation between the theory of regularity structures and paracontrolled calculus. We give a paracontrolled representation of the reconstruction operator and provide a natural parametrization of the space of admissible models.
This article begins with a brief review of random matrix theory, followed by a discussion of how the large-$N$ limit of random matrix models can be realized using operator algebras. I then explain the notion of Brown measure, which play the role of t
We develop further in this work the high order paracontrolled calculus setting to deal with the analytic part of the study of quasilinear singular PDEs. A number of continuity results for some operators are proved for that purpose. Unlike the regular
We prove a general equivalence statement between the notions of models and modelled distributions over a regularity structure, and paracontrolled systems indexed by the regularity structure. This takes in particular the form of a parametrisation of t
In this paper, we consider the dynamics of a 2D target-searching agent performing Brownian motion under the influence of fluid shear flow and chemical attraction. The analysis is motivated by numerous situations in biology where these effects are pre