ﻻ يوجد ملخص باللغة العربية
We prove a general equivalence statement between the notions of models and modelled distributions over a regularity structure, and paracontrolled systems indexed by the regularity structure. This takes in particular the form of a parametrisation of the set of models over a regularity structure by the set of reference functions used in the paracontrolled representation of these objects. A number of consequences are emphasized. The construction of a modelled distribution from a paracontrolled system is explicit, and takes a particularly simple form in the case of the regularity structures introduced by Bruned, Hairer and Zambotti for the study of singular stochastic partial differential equations.
We start in this work the study of the relation between the theory of regularity structures and paracontrolled calculus. We give a paracontrolled representation of the reconstruction operator and provide a natural parametrization of the space of admissible models.
We develop further in this work the high order paracontrolled calculus setting to deal with the analytic part of the study of quasilinear singular PDEs. A number of continuity results for some operators are proved for that purpose. Unlike the regular
We give a short essentially self-contained treatment of the fundamental analytic and algebraic features of regularity structures and its applications to the study of singular stochastic PDEs.
In this paper, we establish an optimal dual version of trace estimate involving angular regularity. Based on this estimate, we get the generalized Morawetz estimates and weighted Strichartz estimates for the solutions to a large class of evolution eq
We consider wave equations with time-independent coefficients that have $C^{1,1}$ regularity in space. We show that, for nontrivial ranges of $p$ and $s$, the standard inhomogeneous initial value problem for the wave equation is well posed in Sobolev