ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the dynamics of a 2D target-searching agent performing Brownian motion under the influence of fluid shear flow and chemical attraction. The analysis is motivated by numerous situations in biology where these effects are present, such as broadcast spawning of marine animals and other reproduction processes or workings of the immune systems. We rigorously characterize the limit of the expected hit time in the large flow amplitude limit as corresponding to the effective one-dimensional problem. We also perform numerical computations to characterize the finer properties of the expected duration of the search. The numerical experiments show many interesting features of the process, and in particular existence of the optimal value of the shear flow that minimizes the expected target hit time and outperforms the large flow limit.
We apply the paracontrolled calculus to study the asymptotic behavior of a certain quasilinear PDE with smeared mild noise, which originally appears as the space-time scaling limit of a particle system in random environment on one dimensional discret
We introduce six families of three-dimensional space-periodic steady solenoidal flows, whose kinetic helicity density is zero at any point. Four families are analytically defined. Flows in four families have zero helicity spectrum. Sample flows from
The paper presents a phenomenon occurring in population processes that start near zero and have large carrying capacity. By the classical result of Kurtz~(1970), such processes, normalized by the carrying capacity, converge on finite intervals to the
The paper deals with homogenization of divergence form second order parabolic operators whose coefficients are periodic in spatial variables and random stationary in time. Under proper mixing assumptions, we study the limit behaviour of the normalize
In this paper we address an open question formulated in [17]. That is, we extend the It{^o}-Tanaka trick, which links the time-average of a deterministic function f depending on a stochastic process X and F the solution of the Fokker-Planck equation