ﻻ يوجد ملخص باللغة العربية
We show that a random puncturing of a code with good distance is list recoverable beyond the Johnson bound. In particular, this implies that there are Reed-Solomon codes that are list recoverable beyond the Johnson bound. It was previously known that there are Reed-Solomon codes that do not have this property. As an immediate corollary to our main theorem, we obtain better degree bounds on unbalanced expanders that come from Reed-Solomon codes.
We consider homomorphisms of signed graphs from a computational perspective. In particular, we study the list homomorphism problem seeking a homomorphism of an input signed graph $(G,sigma)$, equipped with lists $L(v) subseteq V(H), v in V(G)$, of al
The multiplicity Schwartz-Zippel lemma bounds the total multiplicity of zeroes of a multivariate polynomial on a product set. This lemma motivates the multiplicity codes of Kopparty, Saraf and Yekhanin [J. ACM, 2014], who showed how to use this lemma
Golovach, Paulusma and Song (Inf. Comput. 2014) asked to determine the parameterized complexity of the following problems parameterized by $k$: (1) Given a graph $G$, a clique modulator $D$ (a clique modulator is a set of vertices, whose removal resu
Our interest lies in the recoverability properties of compressed tensors under the textit{canonical polyadic decomposition} (CPD) model. The considered problem is well-motivated in many applications, e.g., hyperspectral image and video compression. P
The problem of identifying whether the family of cyclic codes is asymptotically good or not is a long-standing open problem in the field of coding theory. It is known in the literature that some families of cyclic codes such as BCH codes and Reed-Sol