ﻻ يوجد ملخص باللغة العربية
Our interest lies in the recoverability properties of compressed tensors under the textit{canonical polyadic decomposition} (CPD) model. The considered problem is well-motivated in many applications, e.g., hyperspectral image and video compression. Prior work studied this problem under somewhat special assumptions---e.g., the latent factors of the tensor are sparse or drawn from absolutely continuous distributions. We offer an alternative result: We show that if the tensor is compressed by a subgaussian linear mapping, then the tensor is recoverable if the number of measurements is on the same order of magnitude as that of the model parameters---without strong assumptions on the latent factors. Our proof is based on deriving a textit{restricted isometry property} (R.I.P.) under the CPD model via set covering techniques, and thus exhibits a flavor of classic compressive sensing. The new recoverability result enriches the understanding to the compressed CP tensor recovery problem; it offers theoretical guarantees for recovering tensors whose elements are not necessarily continuous or sparse.
We show that a random puncturing of a code with good distance is list recoverable beyond the Johnson bound. In particular, this implies that there are Reed-Solomon codes that are list recoverable beyond the Johnson bound. It was previously known that
In this paper, we propose three approaches for the estimation of the Tucker decomposition of multi-way arrays (tensors) from partial observations. All approaches are formulated as convex minimization problems. Therefore, the minimum is guaranteed to
Expressing a matrix as the sum of a low-rank matrix plus a sparse matrix is a flexible model capturing global and local features in data. This model is the foundation of robust principle component analysis (Candes et al., 2011) (Chandrasekaran et al.
The task of reconstructing a matrix given a sample of observedentries is known as the matrix completion problem. It arises ina wide range of problems, including recommender systems, collaborativefiltering, dimensionality reduction, image processing,
Compressive sensing (CS) is a signal processing technique that enables sub-Nyquist sampling and near lossless reconstruction of a sparse signal. The technique is particularly appealing for neural signal processing since it avoids the issues relevant