ترغب بنشر مسار تعليمي؟ اضغط هنا

List homomorphism problems for signed graphs

91   0   0.0 ( 0 )
 نشر من قبل Jan Bok
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider homomorphisms of signed graphs from a computational perspective. In particular, we study the list homomorphism problem seeking a homomorphism of an input signed graph $(G,sigma)$, equipped with lists $L(v) subseteq V(H), v in V(G)$, of allowed images, to a fixed target signed graph $(H,pi)$. The complexity of the similar homomorphism problem without lists (corresponding to all lists being $L(v)=V(H)$) has been previously classified by Brewster and Siggers, but the list version remains open and appears difficult. We illustrate this difficulty by classifying the complexity of the problem when $H$ is a tree (with possible loops). The tools we develop will be useful for classifications of other classes of signed graphs, and we illustrate this by classifying the complexity of irreflexive signed graphs in which the unicoloured edges form some simple structures, namely paths or cycles. The structure of the signed graphs in the polynomial cases is interesting, suggesting they may constitute a nice class of signed graphs analogous to the so-called bi-arc graphs (which characterized the polynomial cases of list homomorphisms to unsigned graphs).



قيم البحث

اقرأ أيضاً

Golovach, Paulusma and Song (Inf. Comput. 2014) asked to determine the parameterized complexity of the following problems parameterized by $k$: (1) Given a graph $G$, a clique modulator $D$ (a clique modulator is a set of vertices, whose removal resu lts in a clique) of size $k$ for $G$, and a list $L(v)$ of colors for every $vin V(G)$, decide whether $G$ has a proper list coloring; (2) Given a graph $G$, a clique modulator $D$ of size $k$ for $G$, and a pre-coloring $lambda_P: X rightarrow Q$ for $X subseteq V(G),$ decide whether $lambda_P$ can be extended to a proper coloring of $G$ using only colors from $Q.$ For Problem 1 we design an $O^*(2^k)$-time randomized algorithm and for Problem 2 we obtain a kernel with at most $3k$ vertices. Banik et al. (IWOCA 2019) proved the the following problem is fixed-parameter tractable and asked whether it admits a polynomial kernel: Given a graph $G$, an integer $k$, and a list $L(v)$ of exactly $n-k$ colors for every $v in V(G),$ decide whether there is a proper list coloring for $G.$ We obtain a kernel with $O(k^2)$ vertices and colors and a compression to a variation of the problem with $O(k)$ vertices and $O(k^2)$ colors.
We show that a random puncturing of a code with good distance is list recoverable beyond the Johnson bound. In particular, this implies that there are Reed-Solomon codes that are list recoverable beyond the Johnson bound. It was previously known that there are Reed-Solomon codes that do not have this property. As an immediate corollary to our main theorem, we obtain better degree bounds on unbalanced expanders that come from Reed-Solomon codes.
The well-known Disjoint Paths problem is to decide if a graph contains k pairwise disjoint paths, each connecting a different terminal pair from a set of k distinct pairs. We determine, with an exception of two cases, the complexity of the Disjoint P aths problem for $H$-free graphs. If $k$ is fixed, we obtain the $k$-Disjoint Paths problem, which is known to be polynomial-time solvable on the class of all graphs for every $k geq 1$. The latter does no longer hold if we need to connect vertices from terminal sets instead of terminal pairs. We completely classify the complexity of $k$-Disjoint Connected Subgraphs for $H$-free graphs, and give the same almost-complete classification for Disjoint Connected Subgraphs for $H$-free graphs as for Disjoint Paths.
List colouring is an NP-complete decision problem even if the total number of colours is three. It is hard even on planar bipartite graphs. We give a polynomial-time algorithm for solving list colouring of permutation graphs with a bounded total numb er of colours. More generally we give a polynomial-time algorithm that solves the list-homomorphism problem to any fixed target graph for a large class of input graphs including all permutation and interval graphs.
Signed graphs are graphs whose edges get a sign $+1$ or $-1$ (the signature). Signed graphs can be studied by means of graph matrices extended to signed graphs in a natural way. Recently, the spectra of signed graphs have attracted much attention fro m graph spectra specialists. One motivation is that the spectral theory of signed graphs elegantly generalizes the spectral theories of unsigned graphs. On the other hand, unsigned graphs do not disappear completely, since their role can be taken by the special case of balanced signed graphs. Therefore, spectral problems defined and studied for unsigned graphs can be considered in terms of signed graphs, and sometimes such generalization shows nice properties which cannot be appreciated in terms of (unsigned) graphs. Here, we survey some general results on the adjacency spectra of signed graphs, and we consider some spectral problems which are inspired from the spectral theory of (unsigned) graphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا