ﻻ يوجد ملخص باللغة العربية
We investigate classic diffusion with the added feature that a diffusing particle is reset to its starting point each time the particle reaches a specified threshold. In an infinite domain, this process is non-stationary and its probability distribution exhibits rich features. In a finite domain, we define a non-trivial optimization in which a cost is incurred whenever the particle is reset and a reward is obtained while the particle stays near the reset point. We derive the condition to optimize the net gain in this system, namely, the reward minus the cost.
We combine the processes of resetting and first-passage to define emph{first-passage resetting}, where the resetting of a random walk to a fixed position is triggered by a first-passage event of the walk itself. In an infinite domain, first-passage r
The time of the first occurrence of a threshold crossing event in a stochastic process, known as the first passage time, is of interest in many areas of sciences and engineering. Conventionally, there is an implicit assumption that the notional senso
We study the diffusive motion of a test particle in a two-dimensional comb structure consisting of a main backbone channel with continuously distributed side branches, in the presence of stochastic Markovian resetting to the initial position of the p
We study the random processes with non-local memory and obtain new solutions of the Mori-Zwanzig equation describing non-markovian systems. We analyze the system dynamics depending on the amplitudes $ u$ and $mu_0$ of the local and non-local memory a
We study experimentally, numerically and theoretically the optimal mean time needed by a Brownian particle, freely diffusing either in one or two dimensions, to reach, within a tolerance radius $R_{text tol}$, a target at a distance $L$ from an initi