ﻻ يوجد ملخص باللغة العربية
We study the diffusive motion of a test particle in a two-dimensional comb structure consisting of a main backbone channel with continuously distributed side branches, in the presence of stochastic Markovian resetting to the initial position of the particle. We assume that the motion along the infinitely long branches is biased by a confining potential. The crossover to the steady state is quantified in terms of a large deviation function, which is derived for the first time for comb structures in present paper. We show that the relaxation region is demarcated by a nonlinear light-cone beyond which the system is evolving in time. We also investigate the first-passage times along the backbone and calculate the mean first-passage time and optimal resetting rate.
We investigate classic diffusion with the added feature that a diffusing particle is reset to its starting point each time the particle reaches a specified threshold. In an infinite domain, this process is non-stationary and its probability distribut
We combine the processes of resetting and first-passage to define emph{first-passage resetting}, where the resetting of a random walk to a fixed position is triggered by a first-passage event of the walk itself. In an infinite domain, first-passage r
We study a diffusion process on a three-dimensional comb under stochastic resetting. We consider three different types of resetting: global resetting from any point in the comb to the initial position, resetting from a finger to the corresponding bac
The model of binary aggregation with constant kernel is subjected to stochastic resetting: aggregates of any size explode into monomers at independent stochastic times. These resetting times are Poisson distributed, and the rate of the process is cal
We consider the mean time to absorption by an absorbing target of a diffusive particle with the addition of a process whereby the particle is reset to its initial position with rate $r$. We consider several generalisations of the model of M. R. Evans