ﻻ يوجد ملخص باللغة العربية
We study experimentally, numerically and theoretically the optimal mean time needed by a Brownian particle, freely diffusing either in one or two dimensions, to reach, within a tolerance radius $R_{text tol}$, a target at a distance $L$ from an initial position in the presence of resetting. The reset position is Gaussian distributed with width $sigma$. We derived and tested two resetting protocols, one with a periodic and one with random (Poissonian) resetting times. We computed and measured the full first-passage probability distribution that displays spectacular spikes immediately after each resetting time for close targets. We study the optimal mean first-passage time as a function of the resetting period/rate for different target distances (values of the ratios $b=L/sigma$) and target size ($a=R_text{tol}/L$). We find an interesting phase transition at a critical value of $b$, both in one and two dimensions. The details of the calculations as well as experimental setup and limitations are discussed.
We combine the processes of resetting and first-passage to define emph{first-passage resetting}, where the resetting of a random walk to a fixed position is triggered by a first-passage event of the walk itself. In an infinite domain, first-passage r
We investigate classic diffusion with the added feature that a diffusing particle is reset to its starting point each time the particle reaches a specified threshold. In an infinite domain, this process is non-stationary and its probability distribut
We investigate the mean first passage time of an active Brownian particle in one dimension using numerical simulations. The activity in one dimension is modeled as a two state model; the particle moves with a constant propulsion strength but its orie
We present the analysis of the first passage time problem on a finite interval for the generalized Wiener process that is driven by Levy stable noises. The complexity of the first passage time statistics (mean first passage time, cumulative first pas
We provide an analytic solution to the first-passage time (FPT) problem of a piecewise-smooth stochastic model, namely Brownian motion with dry friction, using two different but closely related approaches which are based on eigenfunction decompositio