ﻻ يوجد ملخص باللغة العربية
We study numerically the thermodynamic properties of the spin nematic phases in a magnetic field in the spin-1 bilinear-biquadratic model. When the field is applied, the phase transition temperature once goes up and then decreases rapidly toward zero, which is detected by the peak-shift in the specific heat. The underlying mechanism of the reentrant behavior is the entropic effect. In a weak field the high temperature paramagnetic phase rapidly loses its entropy while the ferroquadrupolar nematic phase remains robust by modifying the shape of the ferroquadrupolar moment. This feature serves as a fingerprint of generic ferroquadrupolar phases, while it is not observed for the case of antiferroquadrupoles.
Specific heat ($C_V$) measurements in the spin-1/2 Cu$_2$(C$_2$H$_{12}$N$_2$)$_2$Cl$_4$ system under a magnetic field up to $H=8.25 T$ are reported and compared to the results of numerical calculations based on the 2-leg antiferromagnetic Heisenberg
We investigate the quantum spin liquid (QSL) ground state of anisotropic Kitaev model with antiferromagnetic (AFM) coupling under the $[001]$ magnetic field with the finite-temperature Lanczos method (FTLM). In this anisotropic AFM Kitaev model with
The thermodynamic properties of the pyrochlore Yb2Ti2O7 material are calculated using the numericallinked-cluster (NLC) calculation method for an effective anisotropic-exchange spin-1/2 Hamiltonian with parameters recently determined by fitting the n
We present a comprehensive experimental and theoretical investigation of the thermodynamic properties: specific heat, magnetization and thermal expansion in the vicinity of the field-induced quantum critical point (QCP) around the lower critical fiel
We discuss the Hubbard model in an applied magnetic field and analyze the properties of neutral spin-1/2 fermions within the so-called statistically consistent Gutzwiller approximation (SGA). The magnetization curve reproduces in a semiquantitative m