ﻻ يوجد ملخص باللغة العربية
We discuss the Hubbard model in an applied magnetic field and analyze the properties of neutral spin-1/2 fermions within the so-called statistically consistent Gutzwiller approximation (SGA). The magnetization curve reproduces in a semiquantitative manner the experimental data for liquid 3 He in the regime of moderate correlations and in the presence of small number of vacant cells, modeled by a non-half filled-band situation, when a small number of vacancies (up to 5%) is introduced in the virtual fcc lattice. We also present the results for the magnetic susceptibility and the specific heat, in which a metamagnetic-like behavior is also singled out in a non-half-filled band case.
Paired state of nonstandard quasiparticles is analyzed in detail in two model situations. Namely, we consider the Cooper-pair bound state and the condensed phase of an almost localized Fermi liquid (ALFL) composed of quasiparticles in a narrow-band w
We study numerically the thermodynamic properties of the spin nematic phases in a magnetic field in the spin-1 bilinear-biquadratic model. When the field is applied, the phase transition temperature once goes up and then decreases rapidly toward zero
Recently, Yb-based triangular lattice antiferromagnets have garnered significant interest as possible quantum spin liquid candidates. One example is YbMgGaO4, which showed many promising spin liquid features, but also possesses a high degree of disor
The magnetic properties of Co3V2O8 have been studied by single-crystal neutron-diffraction. In zero magnetic field, the observed broadening of the magnetic Bragg peaks suggests the presence of disorder both in the low-temperature ferromagnetic and in
In this brief overview we discuss the principal features of real space pairing as expressed via corresponding low-energy (t-J or periodic Anderson-Kondo) effective Hamiltonian, as well as consider concrete properties of those unconventional supercond